
Jk

A..rA.,N,9,- AD-A273 776

DTICSF- ELECTE
DfGC 16 1993

A -

A NUMERICAL STUDY OF HIGH-SPEED MISSILE
CONFIGURATIONS USING A BLOCK-STRUCTURED

PARALLEL ALGORITHM

THESIS

Douglas C. Blake, Captain, USAF

AFIT/GAE/ENY/93D-4

Approved for public release; distribution unlimited

93-30454
93 12 1 5 Oi

Best
Available

Copy

The views expressed in this thesis are those of the author and do not reflect
the official policy of position of the Department of Defense of the U. S.
Government.

Accesion For

NTIS CRAWI
OT: T,•I

Jiiti Of......................

By

Di:At ibution I

Av.-a"i!', COue.
Disti

AFMT/GAE/ENY/93D-4

A NUMERICAL STUDY OF HIGH-SPEED MISSILE CONFIGURATIONS USING A

BLOCK-STRUCTURED PARALLEL ALGORITHM

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Aeronautical Engineering

Douglas C. Blake, B.S.

Captain, USAF

December 1993

Approved for public release; distribution unlimited

Acknowledgements

The principal undertaking of this work was to develop a computational algorithm ben-

eficial to the fields of parallel computing and computational fluid dynamics. The work was not

performed in a vacuum, and I acknowledge the contributions of several key individuals. First,

I wish to thank my thesis advisor, Dr. Philip Beran, for his support, patience, and guidance.

Thanks also go to the members of my thesis committee: Major Tom Buter and Lieutenant

Colonel Wiliam HobarL Major Buter provided key insight into the significance of several

aspects of this work and was always frank and forthcoming in his opinions. His willingness to

spend time with me is much appreciated. Lieutenant Colonel Hobart provided much-needed

direction on parallel-computing issues.

Although not a member of my thesis committee, Captain Ken Moran, perhaps more

than any other individual, aided immeasurably in the completion of this work. It was he who

assisted in the development of the computer code, who tutored a novice in the field of Total

Variation Diminishing Schemes, and who sacrificed time on his research in order to help me

in mine. His knowledge and support are deeply appreciated.

I wish also to thank the many excellent instructors that I have had over the course of

my educational experience, both here at AFIT and at previous institutions. It was they who

prepared me for my sojourn through academia. Although I may be forgotten as their student,

they will always be remembered as my teachers.

Most importantly, I wish to thank my wife. She has endured greater difficulty than I

in the course of my studies and has not uttered a single complaint. I am in her debt, and to

her I dedicate this work.

Douglas C. Blake

fi

Table of Contents

Page

Preface .. ii

List of Figures .. v

List of Tables .. vii

Nom enclature ... xii

Abstract ... x

I. Introduction ... 1

Problem M otivation .. 1
Parallel Computing and Computational Fluid Dynamics (CFD) 5
Numerical Algorithm Overview .. 5
Domain Decomposition ... 6
Missile Configuration Study ... 7
Document Roadmap ... 8

II. Numerical Algorithm ... 10

Equation Development .. 10
Governing Equations .. 10
Finite Volume Formulation 13
Boundary Conditions .. 16

Harten-Yee TVD Scheme .. 17
Inherent Parallelism. 18

I1. Domain Decomposition ... 20

Background ... 20
Load Balancing ... 21
Inter-block Communication 22

Selection of Computational Subdomains 25
Implementation of Domain Decomposition 26

IV. Results .. 30

Parallel Program Validation .. 30
PANS-3EM Performance Testing 31

Sun 4/690 .. 34
Digital Equipment DEC 4000 34
Silicon Graphics 4D/480 .. 34
Convex C220 ... 34

Performance Data .. 35
Aerodynamic Results .. 36

11i.

Computational Issues .. 37
M ethodology ... 39
Drag and Pitching Moment Derivative Coefficient Results 40
Stagnation Region Calculations 42
Boundary Layer Computations 44
Fin-Region Calculations .. 46

M odel W eaknesses .. 50
Grid Refinement .. 50
Fin M odel ... 54

V. Conclusions and Recommendations 57

Summary and Investigation Conclusions 57
Suggested Areas for Further Study 58

Parallel Code Development 58
Aerodynamic Issues ... 59

Appendix A. Nodimensionalization of Governing Equations 60

Appendix B: Parallelization Issues ... 63

Boundary Conditions .. 63
Inter-Domain Communication .. 66
Computational and Block Coordinates 70
Final Implementation ... 72
Vectorization Issues ... 75
Synchronization Issues .. 77
Future Modification Issues ... 81

Shared-Memory Implementation 81
Distributed-Memory Implementation 82

Appendix C: Code Modification .. 84

Appendix D: Code Listings ... 91

Domain Decomposition Subroutine 91
Loop Index Computation Subroutine 95
Offset Calculation Subroutine .. 97
Coordinate Transformation Calculation Subroutine 97

iv

List of Figures

Figure Page

1. Current and Projected Computational Requirements 2

2. Supercomputer Performance .. 3

3. M issile Geom etries .. 8

4. Finite Volume Element ... 14

5. Ghost Cells Along Stagnation Line .. 16

6. Computational Stencil .. 19

7. Decoupled Sweeps ... 19

8. Code Development Model ... 21

9. Domain Decomposition Examples ... 22

10. Inter-Domain Communication Model 23

11. Computational Block and Buffer Arrays 24

12. Missile Coordinate System .. 25

13. Two-Dimensional, Blocked Grid .. 27

14. Three-Dimensional, Blocked Grid ... 28

15. Code Validation for Test Case 1 ... 32

16. Code Validation for Test Case 2 ... 33

17. Detail of Two-Dimensional Grid Plane 38

18. Sharp-Nosed Missile Cm. Results ... 41

19. Sharp-Nosed Missile Cd Results .. 42

20. Stagnation Region Pressure Results for M. = 3.0 43

21. Stagnation Region Density Results for M. = 3.0 44

22. Comparison of Laminar and Turbulent Boundary Layer Velocity Profiles 45

23. Mach Contours for Laminar and Turbulent Boundary Layers in Fin Region 47

24. Fin Region Cross Plane Velocities for Laminar and Turbulent Boundary Layers... 48

25. Fin Region Cross Plane Velocity for M., = 3.5, Laminar Boundary Layer 49

V

26. Fin Pressure Distributions for Laminar and Turbulent Boundary Layers 51

27. Developing Non-physical Solution .. 52

28. Abnormal Pressure Spike at Fin Leading Edge 53

29. Fin Geom etry ... 54

30. Cross-Plane Velocity Distributions at Various Missile Body Locations 56

B.1. Blocked Domain Boundary Types ... 64

B.2. Generic Block Structure and Associated Block Table 67

B.3. Project Block Structure and Associated Block Table 68

B.4. Computational-to-Block Coordinate Transformation 71

B.5. Coarse-Grained Parallelism ... 78

B.6. Fine-Grained Parallelism 79

C.1. Serial Code Flow Diagram ... 85

C.2. PANS-3EM Flow Diagram ... 88

Ai

List of Tables

Table Page

1. PANS-3EM Validation Run Summary 30

2. Code Test Platform s .. 31

3. Performance M etrics ... 35

4. Sharp-Nosed Missile Test Matrix ... 40

B. 1. Example Loop Limiter Values Returned by indzcp 73

vii

r.

Nomenclature

cI airfoil sectional lift coefficient

Cm. pitching moment derivative coefficient

Cd drag coefficient

a angle of attack

M.. freestream Mach number

p densit7

u, v, w velocity components in x, y and z coordinate directions

Et total energy

e specific energy per unit mass

p pressure

T temperature

q heat flux

Y specific heat ratio

A kinematic viscosity coefficient

w coefficient of thermal conductivity

Tj e/4 component of the stress tensor

E, F, G flux vectors

•, P, •, Harten-Yee TVD modified numerical inviscid flux vectors

R, S, T numerical viscous flux vectors

2,)J, & unit vectors aligned along Cartesian xyz axes

R position vector

AdS surface vector

U vector of conserved variables

Kronecker Delta function

J Jacobian of transformation

V arbitrary volume

viii

S surface bounding an arbitrary volume

AW discrete time interval

D missile body diameter

IILl! 2 L2 norm

Subscripts

xy, z differentiation with respect to x, y, or z (except as noted)

Superscripts

nondimensional quantity

time level

ix

Abstract

A numerical analysis of the aerodynamic phenomena associated with the high-speed

flight of a sharp-nosed, four-finned, high-fineness-ratio missile using a block-structured, par-

allel computer algorithm is presented. The Parallel Navier-Stokes Three-Dimensional (3D)

Explicit Missile (PANS-3EM) algorithm utilizes a second-order-accurate, shock-capturing,

Tbtal Variation Diminishing (TVD) scheme and incorporates a Baidwin-Lomax turbulence

model. PANS-3EM allows for extreme flexibility in the choice of computational domain decom-

position and provides for a central "stepping-off point7 for subsequent modification to run on

either a shared- or distributed-memory computing machine. Developmental work consists of

conceptualization and verification of the algorithm as well as parallel performance and scal-

ability studies conducted on a variety of computing platforms.

Using PANS-3EM, the aerodynamic characteristics of the above-mentioned missile

are investigated. Specifically, drag and pitching moment coefficient data are computed and

compared against experimental flight data obtained from the United States Air Force

Aeroballistic Research Facility at Eglin Air Force Base. Trends in the numerical data agree

with experimental results reported by Eglin with the exception that an unexpected reversal of

the stability characteristics exhibited by the flight-test missile at speeds in excess of Mach

3.75 are not confirmed by the computer code.

x

A NUMERICAL STUDY OF HIGH-SPEED MISSILE
CONFIGURATIONS USING A BLOCK-STRUCTURED

PARALLEL ALGORITHM

I. Introduction

1.1 Problem Motivation

Modern numerical algorithms capable of resolving complicated flow structures such

as shocks and boundary layers place great demands on computing resources. Although full

aircraft configuration Navier-Stokes calculations have been performed by Shang [321 and oth-

ers, current generation supercomputers possess neither the speed nor the storage capacity to

ps ior -t complete aircraft model simulation including full-scale turbulence, chemical reac-

tion, structural/aerodynamic coupling, and radar reflectivity models. For example, depending

on the numerical method used, a physical discretization of between ten and twenty [6,301

node points are required to adequately resolve the smallest length scales associated with a

problem. In the case of radar cross-section computations, a scale simulation of a 1 gigahertz

signal illuminating a standard size U.S. fighter aircraft would require a grid containing

approximately 10,000,000 node points '.33]. Storage of flow field and electromagnetic variables

as well as grid metrics for each node would easily exceed both the storage and computational

capabilities of all current and next-generation computing machines. Furthermore, given the

history of computing performance improvements inevitably leading to more ambitious

projects of research, it can be safely assumed that a computing deficit will continue for the

foreseeable future. Figure 1 depicts a few of the computationally intensive fluids-related prob-

lems that are of current interest.

While computing demands continue to increase, there are physical barriers to the con-

tinued speed improvements of traditional serial computing machines. Signals cannot propa-

FuN Aklraft

1010 ftemuWit-

I I a i

72 hr. Weather

1o9 snmudatim

,10 8
- chlmical Dymemi.

107

106 N• e rw L l-

108 109 1010 1011 1012

Speed (FLOPS)
Data compiled from References [241 and [40].

Figure 1: Current and Projected Computational Requirements

gate faster than the speed of light, and thus components separated by some physical distance

must necessarily have a finite response time. Reducing the physical size of the components

can help, but components can only be made so small before barriers are reached in terms of

minimum logic device sizes and heat dissipation requirements.

One extremely promising technology which could help to overcome these shortfalls is

parallel computing. While there are many parallel computing paradigms (Single-Instruction,

Single-Data (SISD); Single-Instruction, Multiple-Data (SIMD); Multiple-Instruction, Multi-

ple-Data (MIMD); etc.'), all use multiple processing units to perform 3imultaneous calcula-

1. The reader is referred to Reference [241 for a discussion of the various parallel computing para-
digms.

2

CnW X.MWMS (2) 0M4 (640001 NEC *X-4* (4) lntel POmgM (40M)**

1 16 100 1000

Peak Performance (GFLOPS)

*estimated

**muftiprocessor nodeo (1024 nodes @ 4 processors/node)

Data compiled from References [91, [20], [22], and [401.

Figure 2: Supercomputer Performance

tions. These calculations can be performed on separate parts of a single problem, or they can

be performed on completely unrelated problems. In either case, the effective throughput of the

computer is increased since a larger amount of computational work can be performed in a

given amount of time.

In addition to the many parallel computing paradigms, parallel computing can be

implemented at many different performance levels. Although there are many different bench-

marks for computing performance [391, a common metric is the number of floating point oper-

ations conducted in one second' (FLOPS). In terms of sheer computing power, super-

computers provide the highest level of performance. Until recently, the supercomputing realm

has been occupied exclusively by machines with few but very powerful processing units. This

trend is changing as is evident in Figure 2 which shows the capabilities of a few of the current

and projected supercomputers. The number in parentheses next to each computer name

denotes the maximum number of processors available on the machine. Although single-pro-

cessor supercomputers are still in use, they are being replaced by multiple processor models

which are capable of delivering much higher performance and throughput.

1. This number is typically measured in terms of million flating point operations per second
(MFLOPS) or billion floating point operations per second (GFLOPS).

3

While supercomputers inarguably occupy the pinnacle of computing power, they are

extremely expensive and therefore only available to a relatively small number of users. Con-

sequently, another parallel computing approach is evolving in the workstation-farm concept

wherein a number of physically distinct and possibly heterogeneous computing platforms are

used in combination to attack a computing problem. Software tools such as Parallel Virtual

Machine (PVM) [25], are designed specifically to exploit this type of parallelism. This

approach has advantages of flexibility, scalability, availability, and affordability over the

supercomputing approach. Furthermore, recent advances in workstation-level chip technol-

ogy1 have brought a large amount of economical computing power to the workstation level.

Despite the continued performance increase of computing machines, hardware alone

is not enough to solve the computational deficit. Indeed, a powerful machine using weak algo-

rithms and poorly designed computer codes can never reach its full potential. Smith [361

underscores the importance of software design in his hyperbole, "Is software everything?. No;

it's the only thing.' In order to fully harness the power of parallel processing, it is necessary to

develop new algorithms which lend themselves to parallelism; it is not enough to merely use

sequential algorithms on parallel machines.

While the potential benefits of parallel algorithms are widely acknowledged, there are

difficulties uniquely associated with parallel algorithm development. Unlike a serial machine

which typically contains a single processor and a single bank of main memory, a parallel

machine can be configured in a myriad of ways: from a large number of relatively low-powered

processors (the Thinking Machines CM-2, for example) to a smaller number of very powerful

processors (the Cray Y-MP, for example). Furthermore, the memory architecture can be dis-

tributed such that each processor contains a bank of local memory, or it can be shared

whereby all processors access a single global memory bank. In certain instances such as the

Thinking Machines CM-5, a single machine can utilize both shared and distributed memory

[7]. All of these architectures pose interesting and challenging problems for the would-be par-

allel programmer.

1. Examples include the DEC Alpha AXP, MIPS R4400 and Sun SuperSparc processors.

4

1.2 Parallel Computing and Computational Fluid Dynamics (CFD)

The applicability of parallel computing to CFD was so obvious from the early incep-

tions that the CFD programming kanuage was developed by the NASA Ames Research Cen-

ter for use on the first SIMD parallel computer, the Iliac IV [181. More recently, several

researchers have demonstrated the performance gains possible in CFD computations using

parallel computing on architectures as varied as shared-memory MIMD machines [29] and

distributed-memory massively parallel MIMD machines [141. However, given the difficulties

associated with parallel algorithm development coupled with the fact that very powerful vec-

tor machines have been very pervasive in the scientific community for quite some time, the

trend to embrace parallel computing for CFD applications has been slow.

A reexamination of Figure 2 may provide some insight into the future direction of par-

allel computing and CFD. In the past, the existence of powerful vector machines like the

Crays tended to focus algorithm development work on codes designed to be highly vectoriz-

able. Similarly, there is a synergistic relationship between the introduction new and powerful,

massively-parallel machines like the Paragon and the development of algorithms which

exploit the inherent parallelism in problems of interest. The tie between CFD and parallel

computing, therefore, can only become stronger.

1.3 Numerical Algorithm Overview

Given the potential benefits of parallel computing and the demonstrated need for flex-

ibility and speed in solving CFD problems, this study focuses on the development of an algo-

rithm to simulate flow fields about high-speed missile configurations in a block-structured,

parallel fashion. The primary objectives are twofold and of equal importance: 1) to develop an

algorithm which decomposes the computational domain into a set of subdomains or blocks

and then solves the governing equations in parallel over the blocks, and 2) to utilize the algo-

rithm to investigate the aerodynamic characteristics of a sharp-nosed, four-finned, high-speed

missile.

The numerical algorithm used to solve the governing equations is a second-order-

accurate Total Variation Diminishing (TVD) scheme developed by Harten [16] and modified by

5

Ye. [47]. It is an extension of the basic first-order-accurate Roe scheme [31], and achieves its

second-order accuracy by appropriately modifying the numerical inviscid flux terms and

extending the Roe scheme's three-point computational stencil (in the one-dimensional case) to

include an additional two points.

Moran [26] has implemented the Harten-Yee TVD scheme in a computer code

designed to study the high-speed flight of missiles. This code provided a baseline which was

modified to incorporate domain decomposition and ultimately resulted in PANS-3EM.

1.4 Domain Decomposition

The Harten-Yee TVD scheme discussed in Section 1.3 is iteratively applied at the node

points of the computational grid surrounding the missile configuration until a flow-field solu-

tion of desired accuracy is obtained. To increase the efficiency of the algorithm, it is possible to

decompose the computational domain into subdomains or blocks so that calculations can be

conducted simultaneously over the subdomains. Thus, it is beneficial to explore approaches by

which the computational domain can be decomposed.

Several methods of domain decomposition have been examined by various research-

ers. Hammond and Barth [151 used a finite-volume approach which assigned each vertex of

the computational mesh to a computer processor. Swisshelm, Horten, Alef, and others

[41,19,1,40] utilize multigrid techniques which discretize the computational domain into a

series of embedded grids which vary in coarseness and are useful for accelerating convergence

and damping certain wave numbers of the solution which create unwanted numerical oscilla-

tions in regions of abrupt flow changes. Yadlin, Hauser, and Furukawa use a blocking or zonal

decomposition [46,17,11] that divides the computational domain into a series of logically rect-

angular blocks which may or may not overlap. Parallelism occurs by advancing the solution

simultaneously over each of the blocks. In all of these schemes, some type of synchronization

is usually required among the parallel processes to ensure that the numerical solution

remains stable.

Of the domain decomposition methods discussed here, the block structured method

was best suited to the framework of Moran's computer code sinc' it did not require code

6

restructuring or grid modification for implementation. Furthermore, with future expandabil-

ity in mind, the method allows for extreme flexibility in grid partitioning and solution compu-

tation. For example, using a blocked approach, it is possible to simultaneously use the less-

computationally-intensive Euler equations in blocks where viscous-related phenomena are

negligible while other blocks incorporate the full Navier-Stokes equations.

1.5 Missile Configuration Study

Using the Harten-Yee TVD scheme discussed in Section 1.3 coupled with the domain-

decomposition approach discussed in Section 1.4, it is feasible to conduct an efficient analysis

of the aerodynamic performance of high-speed missile flight. Recent experimental research

conducted by the United States Air Force Aeroballistic Research Facility at Eglin Air Force

Base [13,44] centers on the determination of aerodynamic performance of generic, fin-stabi-

lized, high-speed missile configurations. Several nose/fin configurations have been investi-

gated including sharp and blunt ogive noses with four clipped delta fins. If the missile fins are

considered as flat plates1, then linearized supersonic flow theory (see Anderson [31, Chapter

11) predicts that the lift generated by the fins is related to Mach number by

4a(I
C= 4c (1)

M - I

Since the lift generated by the missile fins decreases with increasing Mach number,

the pitching moment generated by the fins must also decrease. This trend is confirmed by the

Eglin experimental data through Mach numbers approaching 3.75 at which time an unex-

pected reversal of the pitching moment derivative (Cm.) curve occurs which has not yet been

satisfactorily explained. It is the objective of this study to utilize PANS-3EM to study the

aerodynamic performance about the sharp-nosed missile configuration with special interest

devoted to the stability trends observed for increasing Mach numbers. Moran and Beran [271

have studied the blunt-nosed configuration exhaustively, and their work provides an excellent

1. The fins used on the experimental model were formed from thin sheet metal, with no camber or
twist.

7

I 24 D

F1gure 3: *Mbsll Geomeftres

comparative reference to the work conducted in this investigation. Both sharp- and blunt-

nosed missile configurations are depicted in Figure 3.

1.6 Document Roadmap

With the discussion of parallel computing and its applicability to CFD as a basis,

Chapter 2 outlines the system of conservatik n laws and associated boundary conditions that

govern the flow behavior in the high-speed flight regime and discusses the application of the

Harten-Yee TVD scheme to the solution of those equations. Chapter 3 focuses on the specifics

of the code development and the driving factors motivating the choice of the domain-decompo-

sition technique used in this project. The numerical results obtained from the PANS-3EM

code for the sharp-nosed missile are presented and discussed in Chapter 4 as are results for

performance of the algorithm on a variety of computing platforms. The appendices contain

supplementary information on both the numerical and code development aspects of this inves-

tigation. Appendix A contains a derivation of the nondimensional equations which govern the

fluid behavior in the high-speed flight regime. Appendice3 B and C provide additional infor-

8

mation on important parallelization issues and document the changes made to Moran's code

in the development of the PANS-3EM code. Finally, the source-code listings for the key

domain-decomposition subroutines are found in Appendix D.

9

II. Numerical Algorithm

This chapter presents the equations and boundary conditions which govern the phys-

ics of the flow field around the high-speed missile. With the equations suitably expressed, an

integral formulation is obtained which lends itself to solution via a finite-volume technique. A

discussion of the Harten-Yee TVD algorithm which is used in conjunction with the finite-vol-

ume technique follows. Finally, the features of the algorithm which allow for parallelism are

presented.

2.1 Equation Development

2.1.1 Governing Equations

The Navier-Stokes equations are statements of conservation laws of mass, momentum

and energy. In conservative vector form for a three-dimensional Cartesian coordinate system,

they can be stated as [21

Ut+Ex+Fy+Gz=0 (2)

where

P

PUl
U= Pvj (3)

Pu

Pu2 + P -,xX

E =U Ou- "Y (4)
puw - z

(0Et + p) u - "Cxxu - Txyv - rxzw + q

10

PV~

F= 2 +P~ (5)
pw

G = pVW- (6)

(Et+p)v-.rxU -X TYv -,C Zw + qZ

Et= p vw- U2 zy+ (7)
2

p w + p- "7*z

E (u2 +22 +w 2 (7)

and

qx= (-XT) (9)

qy = (-KT) (10)

qz = (-xT) Z (11)

The conservative form of the equations is used since the numerical solution to these

cŽ,.-$qons is expected to contain shocks and other structures characterized by abrupt flow

property changes [2, pg 511. The vector U contains the conserved variables while the vectors

E, F, and G are the flux vectors.

After nondimensionalization 1 , equation 2 becomes

Ut** +Ex +F;. +GZ. =0 (12)

1. See Appendix A for a description of the nondimensionalization procedure.

I1

where

u* P*v1

P* 14*

E*

xx

p*u*w* -T
xz

(E "+P*)u*-?* u*-,P v*-?* W*q

P* v*

p*u*t,* -.?*
yx

F* p*v*2+p~p~* (15)
yy

p *V* w* -,c
yz

(E' +p*) v* - * J4* -* v* -T* W* +q*
tyx yy YZ

pU* W* -,r*

p*V*W* o* (6

p*w*
2 +p* _T

zz
(E* +P*) w* -.r* u?* -,~yv* -* w* +q*

zr zy z_

U*2 +y* 2 +W*2 (7
Et + 2

a)au 28 a~

and d d)A

= q* 19

(y- 1)M2RePr x

12

q (-rT* (20)
(-M2er Y

-*A* _ (21)
qZ (Y- l)M!RePr

(

Equation 12 represents a system of five equations and seven unknowns. Thus, two

additional equations are required to provide closure. These are obtained from the assump-

tions of a calorically and thermally perfect gas and yield the algebraic relations

p* = (Y-I)p*e* (22)

and

T*= p (23)
p*

Since the form of the nondimensional equations is identical to that of the dimensional

equations, the superscript "*" is dropped for convenience with the realization that the param-

eters Reynolds number, Mach number, and Prandtl number make their appearance only in

the nondimensional case.

2.1.2 Finite Volume Formulation

Equation 12 can be integrated over an arbitrary volume to yield

f UVd+ I (Ex + Fy + Gz)dV = 0 (24)
v V

Application of the Divergence Theorem to the second integral gives

f UdV+fH.RdS = 0 (25)
V S

where H . El + Fj + Gk and S represents the surface bounding the volume, V

13

ndSS2

713

~J 8V fýdAS= (6
In fiitevoumemetodoog eqatin 6 i aplie t eah vlumtrc eemeL

tyia uc lmntS isdpce2nFgr .Cluaino h lxstruhfcso hsee

men pocedsby xainig he haed ac. Te reaofthi fce anbe alulaedby om
putig te cossprouctof he acediaonas, 31 nd 000

Ifutegrica isubscipts ontie thensraevcos ddsgaeteeeetfc hl ueia

14+fHfdS=0(6

subscripts on the position vectors, R, designate the element vertices.

The x-component of the numerical flux, f, through face 1 is thus given by

fix = E(AdS1 .) (30)

where the numerical subscript again designated the element face and the subscript x desig-

nates the flux direction. Similarly, the fluxes in the y and z-directions through this face are

fly= F(AdS1 "1) (31)

fz= G(AdS 1 ") (32)

Repeating this process for the remaining five faces of the volumetric element yields a

total of eighteen projected area terms multiplied by an appropriate flux component. In prac-

tice, it is not necessary to compute all terms for each cell, since adjacent cells share common

faces. In fact, values on three of the six faces are computed which yields nine flux components

computed for each cell.

According to Vinokur [43], the volume for a general hexahedral cell can be computed

as

V= ½(AdS + MdS 2 + AdS3) • 71 (33)

Vinokur also notes that the quantity V is equal to the Jacobian, J.

With the cell volume determined, a first-order-accurate discretization of the temporal

term and a finite volume discretization of the surface integral of equation 26 gives

A n x +f; +fnzk (34)

m--I

where ijk designates the volume element and m is the index of summation over the faces of

the element. In obtaining equation 34, it has been assumed that the flow properties are con-

stant over the interior of the volumetric element.

Wang [451 notes that solution to equation 34 yields the flow variables at the cell cen-

15

stagnation line

ghlost 00oils0ý

Figure 5: Ghost Coils Along Stagnation Una

ters at time level n+1. This, however, requires the determination of the fluxes at the cell faces.

The method used in this study to compute the fluxes is the Harten-Yee TVD scheme which is

discussed in Section 2.2.

2.1.3 Boundary Conditions

Boundary condition implementation is straightforward. Since the flow is supersonic at

the inlet and outlet of the domain, freestream conditions are enforced at the inlet and a super-

sonic "no change" boundary condition is specified at the outflow plane. The no-slip condition is

enforced on the missile body for solutions computed with the Navier-Stokes equations while

Euler solutions use the impermeability and flow tangency conditions at the surface. The

boundary condition on pressure is specified as a zero normal gradient, and the wall tempera-

ture is specified at a constant value. These boundary conditions are consistent with those uti-

lized by Moran [27].

Specification of zero flux along the stagnation line is handled via a reflection condition

through the use of ghost cells. In the case of zero angle of attack, circumferential and tangen-

tial velocity components are reflected across the stagnation line while pressure, density and

axial velocity values are set equal. At angle of attack, an extrapolation technique is used. A

sample set of ghost cells situated along the stagnation line appears in Figure 5.

16

2.2 Harten-Yee TVD scheme

Harten [161 proposed that the inviscid flux components of equation 2 could be modi-

fied to yield

''i+,j i--,jk) i+ j " •, + i+ ,jk i-,jk

+ -s -. AT - -t I(52-j i 5jk

where k, k, and i; represent the modified inviscid flux vectors, A, S, and T represent the vis-

cous flux vectors, and

X u (36)

Here, V is taken as the volume of the finite volume element. The modified inviscid flux vectors

are defined as

E 1 + (4x) r + (Ei+hl,jk +)Eijk)

ij 2 ~ i+!2Jki~~kJ~2 Z+~j
+ PY +I~k(Fi + ILjk + F'ik) + (4z i ,jk ÷G Ij G-'it)

~i Ijkp+ ,+ IjkJ

where the matrix R contains the eigenvectors associated with the modified wave speeds, and

the term 0 "acts to limit the characteristic variable, thereby providing higher accuracy [271."

The terms 4X, 4y, and 4z are the geometric terms of the finite volume formulation and repre-

sent the projected areas of the element face into the x, y, and z coordinate planes.

Equation 37 calculates fluxes at a cell face by using information available at the cell

17

centers. This is known as a non-MUSCL approach. In contrast, a MUSCL approach calculates

fluxes at cell faces by extrapolating information from the cell centers and evaluating flux val-

ues appropriately. The reader should note that the inviscid fluxes of equation 37 are upwind

differenced, while the viscous components of equation 35 are centrally differenced.

2.3 Inherent Parallelism

Parallelism can generally be achieved when the following conditions are met [35,421:

"* The code works correctly in a serial implementation

"• The code is limited by the Central Processing Unit (CPU) and not by other factors
such as Input/Output (I/O), bus bandwidth, etc.

* The code contains portions which are independent of one another (no control
dependence)

* The code portions which are independent do not attempt to write calculations into
the same output variables (no data dependence)

The first, second, and fourth of these issues can be easily verified by examining the

code to be modified. The third issue requires a more fundamental examination of the code's

underlying algorithm. For the case of the TVD scheme used in this investigation, the compu-

tational stencil is depicted in Figure 6. This stencil is comprised of those node points that

enter into the flow variable calculations at a given node point. Off-axes points in the figure are

bound by the shaded box and are represented by the unfilled circles. These stencil points orig-

inate from the central differencing of the viscous terms in equation 35. Darkened circles rep-

resent those points which originate from the flux calculations of the Harten-Yee TVD scheme.

These points can be decoupled through the use of approximate factorization [21 which results

in the three separate one-dimensional stencils shown in Figure 7. These stencils are applied

separately to the node points in a series of sweeps, one such sweep along each coordinate

direction. Upon completion of the third sweep, the solution has advanced to the next time

level. Examination of equation 34 reveals that the scheme is explicit in that calculations at a

given node point use only known information from a previous time step. This explicit nature

allows for a complete decoupling of the calculations at each node point. In theory, given

enough processors, all node values can be calculated simultaneously. In practice, given the

18

FigureS: Comp.Aauonal Stencil

extremely large number of node points in a typical computational mesh, calculations are con-

ducted in parallel over lines of grid points. This technique is especially amenable to imple-

mentation on a vector processor since identical calculations are performed at each node. This

investigation develops an algorithm in which the calculations are performed in parallel over

blocks of grid points. The utility of such a scheme is discussed in Chapter 3.

11

Figure 7: Decoupled Sweeps

19

III. Domain Decomposition

Ibis section discusses the domain-decomposition approach used in this project. Issues

affecting the decomposition approach such as load balancing and inter-domain communica-

tion are identified. General features of PANS-3EM that are of importance to future modifica-

tion efforts are explained.

3.1 Background

As mentioned previously, the method of domain decomposition can take one of several

forms. Since the computer code to be parallelized was already complete, validated, and in use,

the chosen method of domain decomposition required easy incorporation into the framework

of the existing code. Furthermore, since the target machine of implementation was not fixed,

it was desired to develop a decomposition approach which was general enough to run on a

variety of computing platforms with few modifications. Figure 8 shows a sketch of the objec-

tive of the PANS-3EM development process. PANS-3EM provides a stepping-off point for a

subsequent modification or port to either a distributed- or shared-memory computing plat-

form. As discussed in the Section 1.1, implementation on these two architectures requires

very different programming approaches, and thus a code that can be modified for use on

either platform provides a potential benefit in terms of reduced code development time.

A block-structured domain-decomposition approach provides for ready implementa-

tion on either platform. Furthermore, the size and number of blocks can be readily adapted to

fit within the memory limitations on a given machine. This is especially useful in the case of a

distributed-memory machine in which the data must be rigidly partitioned among the avail-

able processor memories.

When implementing a block-structured algorithm, two key areas must be addressed:

load balance and inter-block communication.

20

osrpbtter SaCoded

I mp OZY .Memorynl
ine on

Flgura 8: Code DvopetModel

3.1.1 Load Bal••ce

In a parallel code execution, the run time of the program can be no faster than that of

the slowest process. Thus, in order to achieve optimal turnaround time1 , the work load must

be divided among the processors such that all processors share as near equal portion of the

computational task as possible. For the TVD scheme used in this investigation, the amount of

computational effort required at each node is approximately equal. Thus, in order to achieve a

proper load balance, the number of nodes assigned to each subdomain must be approximately

equal. Given the most general block decomposition scenario, it may be possible to partition

the domain such that each block contains very nearly the same number of node points. How-

ever, in order to speed development of PANS-3EM, the decomposition process was performed

such that no block was allowed to have more than a single neighboring block along a given

block face. This restriction forces block boundaries to be aligned and also implicitly requires

neighboring block faces to contain the same number of computational node points. Valid and

invalid decomposition examples are given in Figure 9. The reader should note that the shaded

1. The author's definition of turnaround time is the physical time elapsed between submission of
the computing job and retrieval of the computed solution.

21

Valid Dmcmnpslitle n Invalid D Poltein

igure 9: Domain Decompositon Examples

face in the invalid decomposition sketch borders on two block faces which violates the stated

restriction. This restriction is not unique to this project; Hauser also implements a similar

restriction during domain decomposition [171.

3.1.2 Inter-block communication

A division of the computational domain into subdomains or blocks necessitates the

communication of information across adjoining subdomain faces. This communication is part

of the parallelization overhead and detracts from the performance of the parallel algorithm

since processors must expend clock cycles either communicating or waiting to c- mmunicate

instead of carrying out the desired calculations. For the TVD scheme used in this project, the

two factors affecting the amount of information which must be communicated across the

blocks are the logical size of the block face in terms of number of nodes and the size of the

computational stencil. These two factors are illustrated in Figure 10. Since the computational

stencil is five-points wide along any of the coordinate directions, points occupying the points

either on a block boundary or immediately adjacent thereto must necessarily use information

22

OCront me"e Pint O ftefteemsl

t Mt

Figure 10: Inwedommin Cormwtlcaion Model

from nodes within an adjacent block. While the size of the block face depends on the logical

partitioning of the computational domain, the size of the computational stencil is fixed due to

the nature of the TVD scheme. From the figure, it is obvious that the number of node points

along any face which require information from an adjacent block is n x m x t.

While relatively unimportant in a shared-memory implementation, the number of

nodes occupying a face of a block becomes very important in a distributed-memory implemen-

tation. This is due to the fact that all across-block references must be handled through the

explicit use of message passing. Reference [211 provides an excellent discussion on message

passing for a distributed-memory architecture. As pointed out by Braaten [51, "the key factor

for minimizing communication costs is to maximize the ratio of computation in each processor

to the communication between processors.* Braaten also notes that the computational work

within a block is proportional to the number of nodes in a block while the communication

work is proportional to the number of nodes on block boundaries. It is therefore desirable to

maximize the internal node to boundary node ratio. Since no communication occurs on block

23

Figure 11: Computanional Block and Buffr Arays

boundaries which are part of the physical problem (i.e., those boundaries which are handled

through the mathematical boundary conditions of the problem), these boundaries should not

be considered in the ratio of internal to facial nodes within a block.

The key data structure normally used [5,17,461 when implementing the interblock

communication model is a set of buffer arrays which are of dimension n x m x t where n and m

are the dimensions of a block face and t is the number of points from which information must

be communicated across block faces. The dimensions crucial to the interblock communication

appear in Figure 10 while Figure 11 shows a general computational block surrounded by six

buffer arrays.

While the buffer arrays are generally quite efficient in terms of computational speed,

it is obvious that there is a storage penalty levied by their use. For example, a single buffer

array for an 82-node-by-35-node block face and a five point computational stencil requires

5740 storage elements. Using buffer arrays in the domain decomposition chosen for this

investigation would require approximately 22 megabytes of storage which translates to a 19%

additional memory requirement above the serial version of the computer code. Because the

serial version of the code requires approximately 115 megabytes of storage and since nearly

24

Figure 12: MissUile Coordinate Systm

all locally-available computing platforms possess a maximum of 128 megabytes of storage

capacity, the use of buffer arra, s in the parti.lelization process was deemed unacceptable.

Instead, a block table was constructed which managed the flow of information between the

blocks with no storage overhead. This data structure is discussed more fully in Appendix B.

3.2 Selection of Computational Subdomains

PANS-3EM is designed to allow for an arbitrary number of computational blocks with

a decomposition performed along any or all of the computational coordinate directions. How-

ever, as mentioned in Section 3.1.1, for this investigation, decomposition was performed along

a single coordinate direction. The choice of the axis of decomposition was motivated by two

primary factors: ease of incorporation into the existing code framework, and inter-block com-

munication.

The computational domain used in this study consisted of 62 x 82 x 35 nodes in the •,

71, and ý coordinate directions, respectively. The coordinate system is depicted in Figure 12. In

this case, computational blocks with a minimum number of facial nodes would be generated

by a decomposition along the q coordinate axis. This decomposition would generate computa-

25

tional blocks with 62 x 35 node block faces across whici information would be exchanged with

neighboring blocks. However, it was anticipated that the addition of a base flow region would

extend the number of points in the 4 direction and greatly complicate such a decomposition.

Consequently, a decomposition along the 4 coordinate direction was chosen since it provided

for the optimal combination of block facial nodes and integration into the existing computer

code. Decomposition in this manner resulted in 2,870 elements along a face for which informa-

tion must be exchanged. Had the decomposition occurred along the ý coordinate direction,

then 5,084 elements would have appeared along a face thus resulting in a 77% greater com-

munication requirement. Again, this communication penalty does not occur on a shared-mem-

ory implementation. Decomposition along two or three axes would increase communication

requirements even further since additional nonphysical boundaries would be created.

Four computational domains were used throughout the course of this investigation.

This number was deemed an acceptable match for the computing machines locally available

which typically consist of between two and four processing units. This decomposition resulted

in three of the four domains containing 45,920 node points while the fourth domain contained

40,180 node points. While load balancing considerations would dictate an identical number of

nodes in each domain, the disparity was necessitated by the restrictions stated previously. No

disparity in number of node points occurs only for the condition

n mod m = 0 (38)

where n is the number of node points along the axis of decomposition and m is the number of

blocks along that axis.

3.3 Implementation of Domain Decomposition

With the structure of the computational blocks determined, generation of the blocks

proceeded by first blocking a single two-dimensional grid plane, and then rotating the blocked

grid plane around the missile's axis of symmetry. Figure 13 shows a blocked two-dimensional

26

Figure 13: Two-OimensionuI, Blocked Grid

grid plane while Figure 14 depicts the inner and outer hull of a three dimensional grid. The

gaps in the grids represent the dividing lines between the computational blocks. Although the

domains are of very different size in the physical space, they contain nearly the same number

of computational nodes. The grids pictured in Figures 13 and 14 are for illustration of the

domain-decomposition process and do not represent the actual grids used to study the sharp-

nosed missile.

Implementation of the domain decomposition was performed by utilizing a four-

dimensional array construct. With this implementation, a node in computational coordinate

space, located with the ordered triple (4j, k), has a one-to-one mapping to a node in the block

coordinate space, located with the order quadruple (ij;k;L). Since it is very impractical for a

programmer or user to specify coordinates in block space, the program takes as input compu-

27

Figure 14: Thre.-Dmenslonal, Blocked Grid

tational coordinates and converts them to block coordinates. For the four domain decomposi-

tion used in this project, the mapping from computational to block coordinates takes the form

L= ~i +ighosI +j (39)
Lidimi

i'= i +ighost - (L -1) idim (40)

28

j,= j (41)

k, = k (42)

where ighost is the number of ghost cells in the i-coordinate direction and idim is the number

of points in each block along the i-coordinate direction. The inverse transformation is given

simply by solving equation 40 for the computational coordinate, L.

The proper handling of computational and block coordinates is fundamental to achiev-

ing a working computer code. The issues concerning the coordinate transformations are dis-

cussed fully in Appendix B.

29

IV Results

Results for this investigation's two major areas of focus-algorithm development and

aerodynamic analysis-are presented. Validation and performance results for the PANS-3EM

code are provided. Additional results which include lessons learned from the algorithm devel-

opment process and a road-map for future parallelization efforts appear in Appendices B, C,

and D. In the aerodynamic arena, computed results for drag and pitching moment derivatives

are compared to other numerical as well as experimental results. Underlying study principles

such as computational grid resolution and fin modeling issues are discussed. Also included are

the results of the turbulence model on the solution behavior.

4.1 Parallel Program Validation

Validation of PANS-3EM was accomplished by comparing results to the serial version

of the code. With both codes run in serial mode, no differences were expected in any of the

computations. A total of four separate validation runs were performed, each designed to test

various aspects of the code. A summary of the runs and the test objectives appears in Table 1.

Table 1: PANS-3EM Validation Run Summary

Run
Number Description Objective

1 Euler boundary conditions, no Test basic code including metric com-
angle of attack, no turbulence, no putations, Euler boundary condition
fins computation routines, and sweep

routines

2 Navier-Stokes boundary condi- Test Navier-Stokes boundary condi-
tions, no angle of attack, no turbu- tion routines, velocity and tempera-
lence, fins ture gradient computation routines,

and fin-handling loops

3 Navier-Stokes boundary condi- Test angle-of-attack-related data
tions, angle-of-attack, no turbu- structures
lence, fins

4 Navier-Stokes boundary condi- Test turbulence routine
tions, angle-of-attack, turbulence,
fins

30

The validation runs were performed using a 62 x 82 x 35 computational grid. With the

exception of run number 1 in which the flow-field was initialized to free stream conditions, all

runs were started from a partially-developed solution. This facilitated a more thorough test of

the code since errors in gradient calculations were difficult to detect for a relatively uniform

flowfield. Validation runs were performed using 100 iterations. Norm histories for validation

runs 1 and 4 are depicted in Figures 15 and 16. Data for runs 2 and 3 are not presented since

their behavior is similar to run 4. Tabular data for selected iterations also appears in each fig-

ure in order to verify that the computed norms are in fact identical.

In addition to the norm results, comparisons were performed on the conserved vari-

ables output from each code. TY e FORTRAN output format specification utilized was e18. 12.

With a 62 x 82 x 35 computational grid, each output file contained approximately 18 mega-

bytes of numerical data. Files were then compared using the UNIX diff command. In all cases,

all computed values were identical.

4.2 PANS-3EM Performance Testing

The performance of PANS-3EM was assessed through comparative timing runs on

several shared-memory platforms. Table 2 contains a summary of the platforms used along

with brief descriptions of the relevant hardware features of each platform.

Table 2: Code Test Platforms

Main Number Processor
Platform Memory of Parallel Implementation

(Mbytes) Processors P l e n

Sun 4/690 600 4 Scalar none

Digital Equipment 360 2 Scalar none
DEC 4000

Silicon Graphics 128 8 Scalar Power FORTRAN
Power Series 4D1/ Accelerator
480

Convex C220 128 2 Vector Compiler Optimization

31

OD V

OsO
cIt

qr C~ CMN

'D ul

-6-
LO 0 Ot 0 It)O

'WJON N

&M r-. cL t

jC'Jc - CMU.

to 0 0

Ul

LO
CM

LO 0 O 0 LO 0
4.C6 (V) Nl N

WJON

32

ctJ-- C
CY.

W) P1.

0 LIO

WJcOJ

co N GO

WEO

CM 0

Lo Y-

CIO

C \0

.33

4.2.1 Sun 4/690

Although this machir' has four processors, no parallelization tools or parallelizing

compiler directives were available. Timing runs were conducted on this machine due to the

large amount of main memory which eliminated any memory paging effects that could bias

the timing results.

4.2.2 Digital Equipment DEC 4000

Version 6.0 of the Digital Equipment (DEC) FORTRAN compiler was incapable of gen-

erating object code for a parallel implementation. This situation is currently being addressed

by DEC, and when the problem is resolved, PANS-3EM will be implemented in parallel on

this machine. Timing results for serial execution are presented for future comparative pur-

poses.

4.2.3 Silicon Graphics 4D/480

Of the platforms tested, the Silicon Graphics FORTRAN compiler provides the great-

est flexibility in the parallelization process. Power FORTRAN Accelerator (PFA), a Silicon

Graphics code optimizing preprocessor, performs loop-level optimizations on source code files.

More explicit control is available through the use of operating-system-level function calls and

compiler directives. These tools provide the option of a more complete domain decoupling in

the PANS-3EM code at the expense of a much greater degree of programming effort. Timing

runs presented here were obtained with the use of PFA.

4.2.4 Convex C220

This machine was the only vector machine tested. The performance penalty associ-

ated with the PANS-3EM code was expected to be especially harsh since the modifications

required in order to implement the domain decomposition severely reduced the code vectoriz-

ability. No explicit parallelizing tools were available for this machine and consequently a com-

piler directive was used to accomplish the parallelism.

34

4.3 Performance Data

In all performance tests, both versions of the code were compiled with identical com-

piler flags. For the Silicon Graphics and Convex runs, the performance times are thus indica-

tive of the degree of efficiency with which the respective compilers are able to parallelize each

version of the code.

Table 3 contains the results of the comparative performance testing of PANS-3EM and

the serial code. As expected, in all cases the PANS-3EM code is slower than the original code.

Since no parallelism or optimization was employed on the Sun or Digital Equipment

machines, the performance difference is due exclusively to the additional code required to

implement the domain decomposition. The DEC machine relies heavily on data and instruc-

tion caching to achieve maximum performance; the greater reduction in the performance

numbers on this machine indicates that the new code does not lend itself to the employed

caching algorithms as well as does the serial code. An examination of the coding methodology

as described in Appendices B and D reveals that the domain-decomposition algorithm does

not affect the order of complexity of the serial code. However, there is an increase in operation

count that is reflected in the performance numbers.

Table 3: Performance Metrics

Processors Serial PANS-
Platform Used/ Code CPU 3EM CPU erce

Available Tune (sec) Time (sec)

Sun 1/4 2293.9 2347.5 -2.3

Digital Equipment 1/2 482.0 533.0 -10.6

Silicon Graphics 8/8 2926.8 3372.7 -15.2

Convex 2/2 320.6 420.6 -31.2

The 15 percent performance reduction of PANS-3EM over the serial version of the

code for the Silicon Graphics implementation is composed of two parts: one part correspond-

ing to the extra operation count and another part corresponding to the less efficient loop-level

35

parallelism implemented by the compiler. The four-dimensional array constructs used in the

domain-decomposition approach require an additional looping structure in the computer code.

The presence of this additional nested loop coupled with the necessary across-block-reference

checks results in an added level of complexity which is not easily handled by the parallelizing

compiler.

The performance reduction trend is carried even further in the case of the Convex.

This is directly attributable to the reduced degree of vectorizability of the looping structures

due to the domain-decomposition process. The issue of vectorizability is fully discussed in

Appendix B, Section B.4. The Convex, a shared-memory vector architecture, was not a target

machine of implementation, and consequently the domain-decomposition approach was not

optimized for this machine. The reader should note that vastly different performance num-

bers are expected for a distributed memory vector processing computer such as the Intel Par-

agon or a distributed memory scalar environment such as a workstation farm since these

implementations would require a complete decoupling of the computational domains which

would reduce the degree of loop nesting and eliminate the reduction in code vectorizability

inherent with the current version of PANS-3EM.

As mentioned previously, the reduction in performance numbers for PANS-3EM were

expected due to the additional code required to implement the computational domain decom-

position. This is a necessary precursor to a distributed-memory implementation. The slight

reduction in performance is more than offset by the increased flexibility the PANS-3EM

implementation provides. Furthermore, given sufficient computational tools, a complete

decoupling of the computational domains can be conducted which has the potential of greatly

improving performance. The issues associated with the domain decoupling are discussed in

Appendix B.

4.4 Aerodynamic Re8ults

Aerodynamic results presented here focus on the computed drag and pitching moment

derivative coefficients for the sharp-nosed missile and the aerodynamic phenomena believed

to have the greatest impact on the observed results. These factors include the stagnation

36

region pressure which affects the computed pressure drag, boundary layer resolution which

affcts the skin-friction drag, and flow-field resolution in the fin area which affects the pres-

sure distribution over the fins and consequently greatly impacts the pitching moment deriva-

tive results. A discussion of each of these issues as well as a mention of the key computational

issues and study methodology appears below.

4.4.1 Computational Issues

The computational grid used in this investigation consisted of 62 x 82 x 35 node points

along the 1. T1, and ý coordinate directions, respectively. Minimum wall spacing was fixed at

0.0001. The grid was designed to closely approximate the grid used in the work of Moran [271,

and contains nearly the maximum number of node points that can be used on a 128 megabyte

computing platform. However, certain aspects of the results indicate strongly that the grid

was not sufficiently refined in order to resolve all relevant flow structures. Since a machine

with larger memory capacity and sufficient computing power was not locally available, no grid

refinement study was conducted. However, when the problems associated with parallel imple-

mentation on the DEC 4000 are fully resolved, this issue should be explored in depth.'

Generation of the grid was accomplished using GRIDGEN [381, an elliptical grid gen-

erator developed for Wright Laboratories. Bisymmetry of the flow-field was assumed (no mis-

sile yaw), and hence the computational domain extended over only half of the missile. Points

were clustered in the stagnation and fin regions as well as in the boundary layer. Figure 17

depicts a two-dimensional macroscopic view of the grid as well as a close view of the grid in

the stagnation region. Instead of a perfectly sharp nose, a slight rounding was incorporated in

order to more closely match the missile sketch and shadowgram of Reference [131 and to

improve the solution performance in the nose region. Examination of the axis scales on the

inset graph reveals that the nose radius is extremely small-on the order of 2% of the body

diameter. The three-dimensional grid was formed by rotating and duplicating the two-dimen-

1. See Section 4.2.2.

37

(31A

383

sional grid about the missile's axis of symmetry.

Convergence criteria for the computer runs was established by Moran [28] based on

previous two- and three-dimensional work performed using the Harten-Yee TVD algorithm.

The norm for convergence calculations was defined using the equation

I

11LI1 2 = XA; Ujj2 (43)

where n is summed over all interior nodes in the computational domain and A U represents a

summation over the changes in values of the components of the conserved variable vector, U

between successive time steps. The solution was deemed converged when the norm value

given by equation 43 reached lx04. Approximately 36 CPU seconds were required per itera-

tion on the Convex C220 with a typical case achieving convergence after 8000-10000 itera-

tions.

4.4.2 Methodology

A total of 20 computer runs were performed. Freestream Mach number was varied

between two and six in order to establish trends over the entire range of available experimen-

tal data. Drag coefficients were calculated for zero angle-of-attack missile and include com-

puted contributions due to skin friction and pressure as well as an empirically-obtained

contribution [12] due to the missile base region. Pitching moment derivative coefficients were

obtained by assuming a linear variation in pitching moment over the small (five degree) vari-

ations in angle of attack.

The nature of the numerical algorithm requires an initial solution with a partially

developed shock and boundary layer structure [27]. Accordingly, the flow field was initialized

to freestream conditions, and 100 iterations were performed with the Reynolds number set

artificially high in order to effectively negate any viscous effects. The viscous terms were then

"turned on" and the associated boundary layer allowed to partially develop over several hun-

dred more iterations. Finally, the turbulence model was activated and the solution allowed to

39

iterate until convergence. A summary of the parameters for each computer run appears in

Table 4.

Table 4: Sharp-Nosed Missile Test Matrix

Mach Angle of TurbulenceNumber Attack (deg) Model Active

1 2.0 0.0

2 2.0 0.0 V

3 2.0 5.0

4 2.0 5.0

5 3.0 0.0

6 3.0 0.0 ,

7 3.0 5.0

8 3.0 5.0 V

9 3.5 0.0

10 3.5 0.0 V

11 3.5 5.0

12 3.5 5.0 ,

13 4.5 0.0

14 4.5 0.0 ,

15 4.5 5.0

16 4.5 5.0 V

17 6.0 0.0

18 6.0 0.0 V,

19 6.0 5.0

20 6.0 5.0 V

4.4.3 Drag and Pitching Moment Derivative Coefficient Results

Computed pitching moment derivative results appear in Figure 18. The negative val-

ues of pitching moment coefficient indicate that a restoring moment is being generated by the

fins. As freestream Mach number increases through Mach 3.5, the fins lose effectiveness as is

40

".70-

0 exerment0
-60. 0 EAGLE

x
-U PANS-3EM (Laminar)

o-50 x PANS-3EM (Turbulert)

Ax Ql-400
XQO

-20 x
01 X

00

-10-

0

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Mach Number

Figure 18: Sharp-Nosed MiUsle Cma Resufts

evident by the decreasingly negative values of the pitching moment derivative cefficient. At

approximately Mach 3.75, the trends in the experimental and computed results diverge, with

the computed results continuing in a decreasing fashion while the experimental results

reverse their trend. The reason for the reversal is still not understood and is the subject of

continuing study [28,44]. All computed results predict approximately the same trend, with the

EAGLE code predicting the most marked drop off in Cm.. Since EAGLE is an inviscid code, its

failure to predict the reversal of the stability characteristics indicates that the reversal is

most likely driven by viscous-related phenomena.

Computed drag results appear in Figure 19. As with the pitching moment coefficient

calculations, the trends agree with the experimental results. However, in all cases, the code

41

0.8-

0 experiment

0.7- U PANS-3EM (Laminar)

x PANS-3EM (Turbulent)

0.6-

x 0

0.5

.4,W
20.4-

x
0.3

0.2

0.1 ,
1.5 2 2.5 3 3.5 4 4.5 5

Mach Number

Figure 19: Sharp-Nosd Missile Cd Resufts

significantly under predicts the measured drag. As expected, turbulent drag is higher than

laminar drag due to the much higher skin friction associated with the turbulent boundary

layer.

Examination of Figures 18 and 19 reveals a slight change in the computed trends in

the Mach 3.0-3.5 region. Although no unique flow structures were isolated to this Mach

regime, it is possible that a more sophisticated fin model and a more refined grid may reveal

such structures to which the stability reversal may be attributed.

The results presented in Figures 18 and 19 depend heavily on three primary regions

of computation: the stagnation region, the boundary layer region, and the fin region. A discus-

sion of the observed results far each of these areas follows.

42

0.9- Compression region

0.8-

10.7-

, 0.6- Rankine-Hugonoit condition(L
0.5-

"CO 0.4:.E0~
*• 0.5-
C

Z 0.20.1
0

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
xWD

Figure 20: Stagnation Region Pressure Results for M. = 3.0

4.4.4 Stagnation Region Calculations

Typical results for stagnation region pressure and density appear in Figures 20 and

21, respectively. Both figures show the detached nature of the shock as well as the compres-

sion region that occurs between the shock and the missile nose. A detached shock is expected

since the missile nose is slightly rounded. The slight smearing of the shock evident in the fig-

ures and is a result of the coarseness of the grid as well as the artificial dissipation required to

prevent the formation of nonphysical solutions in the region. Both of these subjects are dis-

cussed in Sections 4.5. Since the nose is slightly rounded, a normal shock develops along the

stagnation line, and the Rankine-Hugonoit relations can be examined to ascertain the accu-

racy of the computed solution. Despite the slight smearing of the shock, computed values of

both pressure and density satisfy the jump conditions to within 5%. A more accurate solution

requires a higher level of grid refinement.

43

5-.
CorTpression region

4.5

47

3.5

3 Rankine-Hugonoit condition

S2.5

E

0
z 1.5

1

0.51 I
0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

x/D

Figure 21: Stagnation Region Density Results for M. = 3.0

Accurate computation of the flow in the stagnation region is important, since this

region experiences relatively high pressures with a large component of the force acting in an

axial direction. This subsequently enters into the drag calculations. Hence, small errors in

this region can translate to measurable differences in drag results.

4.4.5 Boundary Layer Computations

Accurate determination of the skin friction requires that the boundary layer be ade-

quately resolved. Figure 22 contains velocity vector plots of a small portion of the boundary

layer in the nose region of the missile. Both laminar and turbulent boundary layer results are

presented. The length of each vector corresponds to the magnitude of the velocity at a given

point. The differences in the laminar and turbulent profiles are quite evident from the figure.

Of special importance is the much higher wall velocity gradients in the turbulent case versus

44

0f

0 Gt0

010

I2
CD5
CiC

0ý *1A 0

450

that of the laminar case. This results in a higher skin friction for the turbulent case, and is

precisely the reason for the higher drag values observed for turbulent versus laminar flow.

Although not especially important in this context, the shock location is clearly evident

in the figure as the flow turns into itself. The TVD scheme is able to capture the shock in this

location in a single grid point.

While Figure 22 depicts the wall shear stress, the relative thicknesses of the laminar

and turbulent boundary layers are shown in Figure 23. The figure elucidates the Mach con-

tours of the flow in the fin leading edge region. The fin is depicted as the darkest portion of tha

figure; the jagged leading edge of the fin is a result of the technique used to model the fin. The

turbulent boundary layer is approximately three times thicker than the laminar boundary

layer at this location. These trends are in agreement with theoretical results.

4.4.6 Fin-Region Calculations

Since the fins provide the majority of the pitching moment to the missile, it is

extremely important to the accuracy of the solution that the flow be computed correcuy in

that region. The presence of the fins results in interesting and complicated flow structures as

are depicted in Figure 24. The figure presents the velocity profiles at a station eight grid

points downstream from the leading edge of the fins and are obtained for flight at 50 angle of

attack. The differences in the flow qualities between the laminar and turbulent boundary

layer computations are quite obvious. In particular, the laminar case is characterized by a

region of flow between the fins which possesses a relatively high downward velocity compo-

nent. This region is restricted to an area close to the missile body. In contrast, the turbulent

case has a relatively small region of downward velocity which is localized in the proximity of

the upper fin. It is quite possible that the thicker boundary layer associated with the turbu-

lent flow allows for the bulk of the flow to be more easily entrained by the freestream. This is

further evident from an examination of Figure 25 which shows the laminar case at a higher

Mach number. The increased energy of the flow reduces significantly the downward velocity

46

Ln 12 W - -WflC~

j ~j

Cj0

0I IQ

0f
NC

0~~~ It 0

0
02

Lc) Lf U.)N
c-;~~ eýC 1 -:C

47S

I F
Anew

o5 05 6
o 6 6

U/A I

it

ci LL

- --

- -
- --

I

- - .------ -~48

Mach Number. 3.5 Lanrmbr Boundary Layer

I• \ i ,

1.0 i

0.0.

0.5 . I I• I

-0.5

-0.0 0.5 1.0

x/D

Figure 25: Cross Plane Velocity at Fins for M.: 3.5 and Laminar Boundary Layer

49

component.

A momentum analysis using a control volume approach would indicate that a larger

downward velocity component in the flow exiting the volume must translate to an upward

force generated on the missile body. It is difficult, however, to make such a generalization

since the overall momentum of the flow cannot be ascertained from a single cut through the

computational domain.

Figures 26 examines the pressure distribution over the two fins and depicts the same

view shown in Figure 24. The mixing effect of the turbulence results in "spillage' of the pres-

sure from the lower to the upper surfaces of the fins. A more equal pressure distribution over

the fin surfaces corresponds to a reduced net lift and subsequently to a reduced pitching

moment.

4.5 Model Weaknessea

In reference to the experimentally-observed missile stability characteristics, Vitale

[441 states, "A significant number of flights were conducted in this Mach range (3.75-4.40) and

hence there is a high confidence level in the experimental data.* Although the general trends

in stagnation region pressure and density, boundary layer thickness, and wall shear stress

agree with theoretical predictions, the discrepancy between the computed and experimentally

observed pitching moment derivative and drag coefficients suggests a weakness in modeling

portions of the geometries and physics of the problem. Consequently, several areas require

further examination.

4.5.1 Grid Refinement

Several numerically observed phenomena indicate that the computational grid is

inadequate for the intricacies and complexities of the problem. The inadequacy of the grid

manifests itself in several phenomena. The first of these is depicted in Figure 27 which shows

the formation of a nonphysical solution in the stagnation region. Instead of a near-instanta-

50

(I 0 1Imsw p-I
CM8

w 0 uc)wN(0 v 0 0
0c

0 L9c:

7-19
Lo Lo Lo

C Y c

N..

UU

* r5

0o 0 0o (J0

51

0.8-

0.7.

*0.6.

10.5.
0.

0.4.

-0.3

Z 0 .2

0.1

0 -
-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

W/D

Figure 27: Developing Non-physical Solution

neous compression through the shock, there is an area of flow expansion as indicated by the

rapid pressure drop. This is a well-documented occurrence of the Roe Scheme [10,27], and is

known in the literature as a carbuncle. It is a nonphysical, entropy-violating expansion shock

which occurs in the vicinity of sonic points and is caused by a nearly-zero value in one of the

system eigenvalues at that point. The phenomena was observed in several of the solutions,

and was only eliminated by adding artificial dissipation into the numerical scheme. Since dis-

sipation represents an irretrievable loss of information, its excessive use is undesirable.

Refinement of the grid in the stagnation region represents a more efficient method of mitigat-

ing the problem.

While a lack of grid refinement in the stagnation region can help to facilitate the for-

mation of nonphysical solutions, grid coarseness in the fin region results in abnormal pres-

52

0.200

SUl~ r fin Lo w i

1 0.175

0.150

0 , 0 .i ~ i , , i I , ' . . L .

20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0

x/D

Figue 28. Abnormal Pressm SpUn at Fin Lwding Edge

sure distributions along the fins. This phenomena is depicted in Figure 28 which shows an

abnormal pressure spike at the leading edge of the missile fin. The flow structure at the fin

leading edge is extremely complicated due to the presence of shock/boundary layer interac-

tion. As a result, the grid must he sufficiently refined to resolve the flow structures in this

region.

The effect of insufficient grid refinement in the boundary layer manifests itself in the

skin friction calculations. Moran [29] has examined the effects of wall spacing on the drag

coefficient calculations and has found that decreasing the wall spacing from 0.001 to 0.000025

results in variations of as much of 20% in computed turbulent drag coefficient values. Lami-

nar drag calculations, however, were relatively unaffected by this change. Quite obviously,

53

30Ma

3
2.7371
2.67143

2.5 35714
2.1429

1.71429

1.5

2.01 M271
1 .07143

0.57143
0.642957

0.428571
1.5 021428

0

1.0

0.5
21.0 21.5 22.0 22.5 23.0 23.5

x/D

FI .M 2W Ft O@amabY

significantly more grid points ar required in order to accurately model the problem.

4.5.2 Fn Model

The majority of the pitching moment is generated by the missile fins. It is therefore

very important that the fin model accurately reflect the geometries of the actual missile. As

mentioned previously, an infinitely-thin fin model was used in this study. Furthermore, no

conformal gridding was used for the fins; they were simply implemented as a no-slip boundary

condition. Because the fins are implemented as boundary conditions which are enforced at cell

centers, the fin is thus restricted to only "exist" at cell centers. A finite discretization of the

physical domain results in a fin model which does not completely reflect the physics of the

actual fins. This is evident in Figure 29 which depicts the Mach contours around one of the

missile fins. The darkest region of the figure represents the geometry of the fin. The inaccura-

54

cies inherent with this fin model are evident by the ragged profile of the fin leading edge. This

causes perturbations in the flow field which are not reflected in the physical problem. A con-

formal gridding scheme would eliminate this inaccuracy.

A second source of inaccuracy stems from the infinitely-thin fin assumption. Figure 30

contains a series of images depicting cross-plane velocities at various positions along the body.

Careful examination of Figure 30a reveals slight perturbations in the flow upstream of the

fins. This indicates that information concerning the fins is propagated upstream through the

subsonic boundary layer. Figure 30b shows the flow at the leading edge of the fins. The loca-

tion of the fins is clearly visible by the flow deflection near the missile body. Figure 30c shows

the velocity distribution four grid points aft of the fin leading edge while Figure 30d depicts

the flow at the aft end of the missile. While the general behavior of the flow is as expected, the

magnitudes of the cross-plane velocities are not indicative of a fin of finite thickness. Further-

more, since there is no area on the leading or tailing edges of the fins, there can be no pressure

differential across these surfaces and subsequently no pressure drag. The work of Laksh-

manan [231, however, indicates that there is indeed a pressure differential and a fairly sub-

stantial pressure drag contribution. This source of inaccuracy is the main reason the drag

numbers reported in Figure 19 are significantly below the experimentally-obtained values.

55

III: I I

-~~2 11 I -

le P 3

o0 d 0 9 9 ai 9 9 9 9

CVA CvA

11111 56

V Conclusions and Recommendations

5.1 Summary and Investigation Conclusions

The objectives of this investigation were

* to develop an algorithm capable of decomposing the computational domain into a
series of subdomains or blocks such that calculations could be conducted in parallel
over the blocks, and

* to use the code to study the aerodynamic characteristics of a sharp-nosed, high-
speed missile configuration.

Both objectives were met. In terms of the first objective, PANS-3EM, a block-struc-

tured computer algorithm for the study of high-speed missile configurations was successfully

developed and tested. The algorithm incorporates a block-table data structure which facili-

tates the management of the computational domains with very little memory penalty. This is

extremely important given the memory limitations on many of the available computing plat-

forms.

In its current form, the algorithm suffers performance penalties associated with the

loop-level parallelism that was carried forward from the structure of the serial code. With fur-

ther modification coupled with the use of operating-system-level parallelization routines, a

more coarse-grained parallel approach can be taken to yield significant performance improve-

ments. With the domain-decomposition routines in place, the code provides the flexibility for a

subsequent modification to either shared- or distributed-memory computing platform.

With the first objective successfully completed, the aerodynamic characteristics of a

sharp-nosed, high-speed missile configuration were investigated. Nose pressures and densi-

ties in the stagnation region accurately satisfied the Rankine-Hugonoit jump conditions. How-

ever, several solutions were plagued with the presence of a nonphysical expansion region in

the vicinity of the sonic point which affected flow field and pressure distribution in the imme-

diate vicinity of the stagnation point. The area over which this region affected the pressure

distribution on the missile was not ascertained, and further examination of this phenomena is

57

warranted.

Particular attention was devoted to the behavior of the pitching moment derivative as

a function of increasing Mach number. The reversal in the stability trend for increasing Mach

number as obtained from experimental data was not verified by the computer code. Although

a grid-sensitivity study was not conducted due to computing resource limitations, it is

believed that the current grid does not possess the level of refinement necessary to capture all

of the important aspects of the flow structure, especially in the stagnation region and the area

of the fins. This was manifest in several phenomena including a 20% change in the computed

turbulent drag coefficient as the wall spacing was refined from .001 to .000025. Additionally

abnormal pressure spikes at the leading edge of the fins observed for the laminar boundary

layer solutions. These spikes were not seen in the turbulent case, and it is believed that they

would be eliminated given a sufficient level of grid refinement.

5.2 Suggested Areas for Further Study

5.2.1 Parallel Code Development

1) The domain-decomposition of PANS-3EM should be further explored so that the

computational domains can be completely decoupled. This deccupling would facilitate a

coarse-grained parallel approach which has the potential of much greater levels of perfor-

mance and is a required step for implementation on a distributed-memory computing plat-

form.

2) A comparative study of the use of buffer arrays to manage communication informa-

tion vs. the block table would be beneficial in ascertaining the best use of computer resources

in terms of memory/speed trade-offs. Since buffer arrays were not implemented in this inves-

tigation, no direct performance comparisons were possible.

3) The current code uses very large arrays to contain the flow variable and grid met-

ric information. New, very-high performance, workstation-type computers depend heavily on

memory caching in order to achieve maximum performance. The large data structures of the

58

current code do not map well to such a caching architecture, and thus it is difficult to achieve

good computing performance. Taking advantage of the explicit nature of the TVD algorithm,

it is possible to restructure the code such that computations are performed in a more pipe-

lined fashion whereby all information for a given node at time level n+1 is computed before

computations on the next node begins. The inherent parallelism of the algorithm is unaffected

by such a modification.

5.2.2 Aerodynamic Issues

1) Given the sensitivity of the computed flow field on the calculation of the pitching

moment coefficient, it may prove beneficial to explore the effect of various gridding techniques

for the fins. Instead of treating the fins as an impermeability boundary condition enforced at

certain computational mesh points, a conformal gridding approach may improve the accuracy

of the calculations in the fin region. A finite-thickness fin model may also provide insight.

Regardless of the method of fin implementation, a finer grid--both axially, radially, and azi-

muthally should be used.

2) Since boundary layer growth rates are different for laminar and turbulent cases, a

study should be conducted concerning the effectiveness of the missile fins as a function of

boundary layer thickness. This is especially important given the boundary layer/shock inter-

action phenomena that occurs at the leading edge of the fins.

3) The Baldwin-Lomax turbulence model used in this study is relatively easy to

implement and has been shown to give acceptable results for fin/body junction calculations

[23]. However, implementation of a two-equation model would provide a means of comparison

of the performance of the turbulence model and its affect on the solution. A different model

may provide the subtle difference necessary to verify the experimental data, or at the very

least, it would provide a verification of the turbulence model currently in use.

59

Appendix A: Nondimensionalization of Governing Equations

Nondimensionalization of the governing equation follows the procedure of Beran [41

and is accomplished through use of the following parameters

x=x*D y y*D z= z*D

u= u*U v=v*U w=w*U

D
T= T*Tef p = P*ref t= t*(

AL = g* grf P = P*Pe,.U E, = Et*pr

where the nondimensional parameters are denoted by a superscript'""', D is the diameter of

the missile body, and the subscript refrefers to a reference value.

Substituting these values into the governing equations yields the following set of non-

dimensional equations.

Continuity

a(P*Prp, a(P*PreU*u) a(P*PrefY*U) (P*PrewU) = 0 (A)+ + + (1
a(t* (DIU)) a(x*D) a(y*D) a(z*D)

Pulling constant terms outside the differentials and multiplying the equation by (D/U)/Pref

gives

a(p*) a(p'u') a(p*v*) a(p*w*)
(t*) + (x*) +) (z*)A2)

X-momentum

a(P*Pre.t*U) a(p*pPreju*2U2) a(P*Pre/U*V*U2) a(p*prefg*W*U2)
+ +

a(t* (DIU)) a(x* D) a(y'D) a(z* D)

60

a(P*PyU2) 2 , 2 au*U vU (A*3)
a(x*D) a ((xD) 3 ref tr2ý-•f - -y*D))

a au*U av*u 3a W au* U ,w*U
+a (y*-D) (}L Pref(y-•D - E-D))) a(z*D) (Ia*ref(3-D - *D

where the viscous stress terms have been expanded into their velocity-derivative components.

Again pulling constant terms out of the differentials and multiplying the resulting expression
by LI (prefU2), equation A.3 becomes

a(p*u*) a(p*u* 2) a(p*u*v*) a(p*u*w*) a(p*)
3** + + 0* + az* +

I (3a_(2 (au* ay* a au* a3y * j.•(* (w,

where Re is the Reynolds number based on missile body diameter.

A similar process yields expressions for they- and z-momentum equations.

Energy

For the sake of brevity, the derivation of the energy equation is presented somewhat

more succinctly. Constant terms are pulled outside the derivatives and terms involving the

viscous stress components are not placed in terms of velocity derivatives. This results in

Pre/. 3 (aEt* a(E+*u*) a(Et*v*) a(Et*w*))
D -it-* + +++y* + z*

a| T* aT, *
(_ _ a-_-) a(,*,a-q-) a(,€*-E-)

Dl - (+ 3. +a*a*

efU(*+2'+~)u* + (,* +,[* +T~*)V* + (V +TrA +'r.*)w*)
D2 XX yx ZX YX yy zy zX zy U

61

-Pr U3 a(p*u*) +a(p*v*) + a(p*w*) (A5)

-D ax* + ;i* -

After multiplying equation A-5 by DI(p -r/OI), the coefficient of the viscous terms is given as

Pref 1 (A 6)
p re D Re

and the coefficient of the heat-flux terms is found to be

ICref Tref (A 7)
P refU 3 D

Applying the definition of Mach number and Prandtl number to the terms of equation A.7

yields the relation

lCrefTref 1(A8)

prelf 3 D RePr(T-1)M 2

ref -ref

Finally, from Beran [4],

*= (A.9)

Thus, the energy equation becomes

aEt* a(Et*u*) a(Et*V*) a(Et*w*)
I + +

at x ay* a&* a(* 7

_ _ _ ay* + a_,
RePr(y-1)M

2 a
ref

e(p*u*) + a (p* V*) + a(p*w*) (A 10)

-a +2 az*

62

Appendix B: Parallelization Issues

'Tis appendix discusses the issues which must be addressed during parallelization of

a CFD code. It is provided as a road-map for future parallelization efforts. General issues

including handling of boundary conditions and synchronization issues are presented along

with specifics of the implementation of the parallel TVD scheme used in this project.

B. 1 Boundary Conditions

Boundaries for the blocked domains can be divided into two groups: one group con-

tains those boundaries which represent physical boundaries and are treated via the mathe-

matical boundary conditions imposed by the problem physics, while the second group contains

those boundaries which are introduced in the blocking process. Unlike the boundaries in the

first group, these boundaries have no physical basis and consequently, their presence must

not affect the solution in any way. Figure B.1 depicts these two types of boundaries. In the fig-

ure, the continuous computational domain has been cut into two blocks and the blocks have

been rolled back to reveal the newly-created boundaries represented by the shaded surface on

each block.

The domain decomposition does not alter the method by which the physically based

boundary conditions are handled. However, since the boundary conditions associated with

each face of the domain can be unique, this poses a problem for homogeneous parallel pro-

gramming in which all threads of execution carry out the same set of instructions. For exam-

ple, at the leading edge of the computational domain in this implementation, ghost points are

reflected across the stagnation line in order to provide suitable handling of the boundary con-

ditions and the required number of points for second-order accuracy of the finite-difference or

finite-volume scheme. Atypical code fragment which handles the boundary condition updates

for these points follows. For this code fragment as well as all following fragments, the follow-

ing convention is used:

The code fragments appear in FORTRAN.

63

New~ly Omute4

Figure BA1: Blocked Domain Boundary Type.

*Most fr-agments contains a serial code section and its corresponding PANS-3EM
code section
* Sections of code of particular importance to the blocking process appear under-
lined.

"* Lines preceded by a "/* designate comment lines.

"* The variable nakm numbik refers to the number of blocks in the block-structured
computational domain.

*Look-ups to the block table are denoted as iblktb.

£UPraMon& oukdlyoadzion~r tmm

do 10 j = 1, jmax
do 2.0 k = 2, kmax-2

rho(C,j,k) =6. *rho(2, j,k)*rho(3, j,k) +3 .*rho(4, j,ki
u(0,j,k) = 6.*u(2,j,k)-.8.*u(3,j,k)+3 .*u(4,j,k)
v(0,j,k) = 6.*v(2,j,k) -8.*v(3..j,k)+3.*v(4,j~k)
w(0,j ,k) = 6 .*w(2,j,k) ..8.*w(3,j,k) +3.**i.(4,j,Jk)
p(0, j, k) = 6. *p(2, j,k) -8.*p(3 ,j ,k) +3. *p(4,j ,k)
et(0,j,k) = p(0,j,k)/gml + .5*rho(0,j,k)*

(u(0,j,k)**2+v(0,j,k)**2+w(0,j,k)**2)

vu(0..j,k,n,2.) = rho(0,j,k)
vu(0,j,k,n,2) = rho(0,j~k) *u(0,j,k)
vu(0,j,k,n,3) = rho(0,j,k) *v(0,j,k)
vu(0,j ,k,n,4) = rho(0,j,k) *w(0,j,k)
vu(0,j,k,n,5) = et(0,j,k)

10 continue

64

do 10 L = 1. numblk
call indxcp(L,0,0,1,jmax,kmin,kmax,iblkmnn,i.blkmx,

jblkmn, jblkmx, kblkmn, kblkunx)
do 10 i = iblkmn, iblkmx
do 10 j = 1, jmax
do 10 k = 1, kmax

rho(i,j,k,L) = 6.*rho(i+2,j,k,L)-8.*rho(i+3,j,k,L)÷3.*rho(i'4,j,kL)
u(i,j,k,L) = 6.*u(i±2,j,k,L) -8.*u(i+3,j,k,L)+ .3.'u(i.4,j,k,L)
v(i,j,k,L) = 6.*v(i+2,j,k,L) -8.*v(i+3,j,k,L)+3.'v (i+4,j,k,L)
w(i,j,k,L) = 6.*w(i+2,j,k,L)-8.*w(i+3,j,k,L) +3.*w(i.4,j,k,L)
p(i,j,k,L) = 6.*p(i 2, j,k,L)-8. rp(i÷3,j,k,L)'3.*p(i÷4,j,k,L)et(i,j,k,L) = p(i,j,k,L)/gml + .5*rho(i,j,k,L)*

(u (i, j,k,L) **2+v (i, j,k,L) **2+w(i, j,k,L) **2)

vu(i,j,k,L,n,l) = rho(i,j,k,L)
vu(i,j,k,L,n,2) = rho(i,j,k,L)*u(i,j,k,L)
vu(i,j,k,Ln,3) = rho(i,j,k,L)'v(i,j,k,L)
vu(ij,k,L,n,4) = rho(i,j,k,L)*w(i,j,k,L)
vu(i,j,k,L,n,5) = et(i,j,k,L)

10 continue

Although the restructured code allows all threads of execution to execute the loop,

those blocks not containing the ghost points will merely continue since the iblkmn and iblkmx

loop indices returned by the call to indxcp will be 0 and -11. Depending on the parallel imple-

mentation and synchronization method used, execution threads which handle blocks not

involved in this loop may be able to continue on to the next code segment. If loop-level paral-

lelism is used, or if the code requires synchronization before the next code segment can exe-

cute, then threads will be forced to wait or spin until the thread handling the ghost point

completes execution of the loop. This is a potential source of inefficiency which can greatly

limit the performance gains of parallelism. The same problem holds true for the remaining

boundaries of the computational domains and extends to any section of code which handles

only a portion of the computational domain such as those loops which only operate over the

missile fins. Future implementations should investigate a more complete decoupling of the

domains. Several options are available, including an object-oriented programming approach

in which the domains are constructed as classes. Boundary condition updates can be per-

formed through a class method which can be implemented such that all blocks update bound-

ary information simultaneously.

The reader should note that the i+2, i+3, and i+4 array element references appearing

in the above code fragment are not the correct way to handle the i=2, i--3, and i=4 references

I. A discussion of the subroutine indzcp and its associated block table appears in section B.2.

65

of the original code segment and only appear as such here to avoid complication of the loop for

this discussion. A discussion of the proper handling of these references appears in Sections

B.3 and B.4.

B.2 Inter-Domain Communication

All across-block references can be thought of as inter-domain communication. Several

methods were investigated for handling these references. In the current implementation, any

i-i or i+1 reference in the code constitutes a possible across-block reference. Although not

implemented in the current version of the computer code, aj.l,j+l, k-I, or k+1 reference also

constitutes a potential across-block reference in a completely generic domain-blocking

scheme.

Because the use of buffer arrays was determined to be impractical due to memory con-

straints, a block table data structure was developed to manage the flow of information

between the blocks of the computational domain. The block table was implemented as a sim-

ple two-dimensional array. Figure A.2 shows a sample block table for a fully generic domain

decomposition case while Figure A.3 shows the block table and domain decomposition used in

this project. The boldly outlined cells in the block tables represent that portion of the block

table actually implemented in the data structure. Although the block table serves a key pur-

pose in the domain-decomposition process, blocking the domain by simply using the block

table to index the program loops becomes very convoluted. This is illustrated in code fragment

2 which is taken from the subroutine which computes the velocity and temperature gradient

terms (subroutine GRADIENT).

Code Fraognt 2I Block Table Usa

do 25 k = 1, kmnax-1
do 25 j = 2, jmax-1
do 25 i = 2, imax-1
dudx(i, j,k) =. 5"(. 5"(xnip (i, j,k) +xnip (i-l, j,k)) *

(u(i+1,j,k)-u(i-1,j,k)) + .5*(xejp(i,j,k)+xejp(i,j-l,k))*(u(i,j+l,k)-u(i,j-l,k)) + .5*(xzkp(i,j,k)+xzkp(i,j,k-l))*
(u(i,j,k+1)-u(i,j,k-1)))

25 continue

66

S~8

Block Neighboring Block Max Coordinate

Nu mi imax jmin jmax kmin kmax i j k

1 0 2 0 5 0 3 31 41 18

2 1 0 0 6 0 4 61 41 18

3 0 4 0 7 1 0 31 41 35

4 3 0 0 8 2 0 61 41 35

5 0 6 1 0 0 7 31 81 18

6 5 0 2 0 0 8 61 81 18

7 0 8 3 0 5 0 31 81 35

8 7 0 4 0 6 0 61 81 35

max coordinates given for a 61 x 81 x 35 computational grid

Figure B.2: Generic block sructure and associated block table

67

Block Neighboring Block Max Coordinate

Num i imax jmin jmax kmin kmax i j k

1 0 2 0 0 0 0 15 81 35

2 1 3 0 0 0 0 31 81 35

3 2 4 0 0 0 0 47 81 35

4 3 0 0 0 0 0 61 81 35

Figure B.2: Project block structure aassociated block table

Using the block table to reconstruct this loop requires special attention to the i-i and

4+1 across-block references. A total of four loops are thus required: two loops to handle the

interior points for the blocks and two loops to handle the across-block references. The code is

then restructured as follows.

PANS-EIMLCode
/*Handle the first block except across-block references.

G8

5=1
do 10 k = 2, kmax-l
do 10 j = 2, jmax-l
do 10 i = 2. iblktb(L.7)-I

dudx(i,j,k,L)=.5*(.5' (xnip(i,j,k,L)V xnip(i-l,j,k,L))*
(u(i+l,j,k,L)-u(i-1,j,k,L)) + .Sw(xejp(i,j,k,L)+xejp(i,]-lý,k,L))-
(u(i,j+l,k,L)-u(i,j-l,k,L)) + .5*(xzkp(i,j,k,L)+xzkp(i,j,k-l,L))*
(u(i,j,k+l,L)-u~i,j,k-l,L))

10 continue

/*Handle the remaining blocks, but avoid across-block references.

do 20 L = 2. numblk
do 20 k = 1, kmax-1
do 20 j = 2, jmax-1
do 20 1 = 1. iblktb(L.7)-Idudx(i, j,k,L)=.5* (.5" (xnip (i, j,k,L)+xnip (i-l, j,k,L))*

(u(i+1,j,k,L)-u(i-1,j,k,L)) + .5*(xejp(i,j,k,L)+xejp(i,j-l,k,L))*
(u(i,j+1,k,L)-u(i,j-l,k,L)) + .5*(xzkp(i,j,k,L)+xzkp(i,j,k-l,L))*
(u(i,j,k+1,L)-u(i,j,k-l,L)))

20 continue

/*Handle the i+1 across-block references.

do 30 L = 1. numblk-1
do 30 k = 1, kmax-1
do 30 j = 2, jmax-1
i= iblktb(L.7)

dudx(i, j,k, L)=. 5"(. 5"(xnip (i, j, k,L) +xnip (i-l, j, k,L))*
(u(l.i.k.iblktb(iblktb(L.2fL)-u(i-l,j,k,L)) +
.5"(xejp(i,j,k,L)+xejp(i,j-l,k,L))*
(u(ij+1,k,L)-u(i,j-1,k,L)) + .5*(xzkp(i,j,k,L)+xzkp(i,j,k-l,L)*
(u(i,j,k+1,L)-u(i,j,k-1,L))

30 continue

/*Handle the i-i across-block references

do 40 L = 2. numblk
do 40 k = 1, kmax-1
do 40 j = 2, jmax-1

dudx(i,j,k,L)=.5* (.5" (xnip(i,j ,k,L)+
xniD(iblktb(iblktb (L.7)).i.k.iblktb(L. l)*
(u(i+l,j,k,L)-u(iblktb(iblktb(L.7)).i.k.iblktb(L.In_ +
.5" (xejp (i, J,k,L) +xejp (i, j-l, k, L}))*
(u(i,j+1,k,L)-u(i,j-l,k,L)) + .5*(xzkp(i,j,k,L)+xzkp(i,j,k-l,L))*
(u(i,j,k+1,L)-u(i,j ,k-1,L)

40 continue

The methodology used in code fragment 2 is readily adaptable to a distributed-mem-

ory architecture since the indices which contain block table references would be implemented

via message passing on a distributed-memory machine. Using the Intel Hypercube message-

passing paradigm as an example [211, a message consists of five parts which include the mes-

sage data type, message buffer, message length, receiving node identifier, and receiving pro-

cess identifier. Examining the underlined variable znip, the message data type is the type of

the variable xnip (double-precision real), the buffer corresponds to the particular array ele-

ment of znip, the message length is 8 bytes for a double-precision array element, and the

69

receiving node identifier is denoted in iblktb(L,1). The receiving process identifier depends on

the implementation.

The utility of the buffer arrays mentioned in Chapter 3 is also obvious in code frag-

ment 2. The existence of buffer arrays eliminates the need for special handling of the across-

block references in the third and fourth loops. The arrays would simply be updated once at the

beginning of each sweep and the indexing on the i variable incremented over the block bound-

aries. Again, while this method is very efficient in terms of execution speed (once the arrays

are updated), the memory penalty can be prohibitive.

The implementation shown in code fragment 2 does not increase the order of complex-

ity of the computer code; it is still 0(n) where n is the total number of grid points in the com-

putational mesh. In fact, the only overhead incurred in this implementation is that associated

with setting up the additional looping structures and with the double lookup of array indices

given by ibLktb(iblktb(L,7)). Des, te this fact, the code is fraught with several weaknesses.

They include:

* The code relies on the fact that the first block along the i direction is block 1 and
the last block in the i direction contains the last i point. This may not be the case for a
completely generic implementation.

• The volume of additional code generated makes the introduction of mistakes very
likely.

• Each loop handles only a portion of the blocks, thus making an efficient parallel
implementation very unlikely.

* The code structure does not handle computational-to-block coordinate transforma-
tions well.

While the first three weakness are problematic, the fourth makes the approach shown

in code fragment 2 unusable.

B.3 Computational and Block Coordinates

Once the computational domain has been decomposed, the ordered triple locating a

variable in the computational domain cannot be used to locate that variable in the block coor-

dinate space. This poses a challenging problem in determining proper loop indices for the pro-

gram loop constructs. An example involving the missile fins amply illustrates this point.

70

if in Iifn2

Figure B.3: Computational-to-Block Coordinate Transformation

Calculation of the gradients at the missile fins require special handling, since the fins

are implemented as a impermeability boundary condition in the computer code. Consequently,

there are code loops with indices of/fin, i/fin2, i/fin-i, fin2-2, etc. While it is very straightfor-

ward to determine the location of i/fin2-1 given the location i/fin2 in the computational coordi-

nate space, it is much less a trivial problem in the block coordinate space. Although the fin

configuration in the domain decomposition used in this project did not pose a great problem, it

is possible that a different decomposition could yield the configuration depicted in Figure B.3.

Because the leading edge of the fin (i/fin) appears on a block boundary, i/fin-I is not found sim-

ply by looking one location to the left; instead, it appears in a different block. A loop construct

with indices of i/in-1 and fin2 would thus require careful handling. The following code frag-

ment loops over the region of the physical domain from the leading edge of the missile fins to

one point before the trailing edge of the missile fins.

71

Code Frangnt 3: Loop Index Example

do 310 i = ifin. ifin2-1
do 310 i = ifin(il+l. imax-1

signx = sign(1.00,alpha(i,j,1,2))
dargl = min(abs(alpha(i,j,1,2)),signx*alpha(i,j,1,1))
g(i,j,1,2) = signx * max(0.00,dargl)

signx = sign(1.00,alpha(ij,2,2))
dargi = min(abs(alpha(i,j,2,2)),signx*alpha(i,j,2,1))
g(i,j,2,2) = signx * max(0.00,dargl)

signx = sign(1.00,alpha(i,j,3,2))
dargl = min(abs(alpha(i,j,3,2)),signx*alpha(i,j,3,1))
g(i,j,3,2) = signx * max(0.00,dargl)

signx = sign(1.00,alpha(i,j,4,2))
dargi = min(abs(alpha(i,j,4,2)),signx*alpha(i,j,4,1))
g(i,j,4,2) = signx * max(0.00,dargl)

signx = sign(l.00,alpha(ij,5,2))
dargi = min(abs(alpha(i,j,5,2)),signx*alpha(i,j,5,1))
g(i,j,5,2) = signx * max(0.00,dargl)

310 continue

If it is assumed that the block decomposition varies depending on the number of grid

point and the number of available processors, then it cannot be known a priori in which block

the leading and trailing edge of the fins will exist. Furthermore, any additional geometries or

features to the missile which require special numerical computations will greatly exacerbate

this problem. Code fragment 2 required special loops to handle across-block references, yet it

is obvious that it is not possible to unequivocally state whether or not across-boundary refer-

ences are required in a looping construct between two arbitrary i coordinates. This makes the

code listed in code fragment 2 highly specific and impractical to generalize for handling arbi-

trary geometry or flow-field specific calculations.

B.4 Final Implementation

The coordinate transformation and across-block-reference problems were solved via

the implementation of a subroutine which takes as an input a computational coordinate and

computes proper loop indices in block-coordinate space. With this implementation, code frag-

ment 3 becomes

72

PANS-FM Coa
do 10 L =1. numblk

call indxcn(L~ifin.ifin2-1,jrnin,jmax,kjnin,kinax,iblkmn~iblkmx,
jblkmn, jblkmx, kblkmn, kblkmx)

do 10 i = iblkmn. iblkimx
do 10 i = ifin(LAI~+1. imax-1

signx = sign(1.00,alpha(i,j,L,1,2))
dargI = min(abs(alpha(i,j,L,1,2)),signx*alpha(i,j,L,1,1))
g(i~j,L,1,2) = sigrix * max(0.00,dargi)

signx = sign(l.00,alpha(i,j,L,2,2))
dargi = min(abs(alpha(i,j,L,2,2)),signx*alpha(i~j,L,2,l))
g11,.j,L,2..2) =signx * max(0.00,dargl)

signx = sign(1.00,alpha(i,j,L,3,2))
dargi = min(abs(alpha(i,j,L,3,2)),signx*alpha(i,j,L,3,1fl
g(i,j,L,3,2) = signx *max(0.00,dargl)

signx =sign(1.00,alpha(i~j,L,4,2))
dargl = min(abs(alpha(i,j,L,4,2)),signx'alpha(i,j,L,4,1))
g(i,jL,4,2) = signx * max(0.00,dargl)

signx = sign(1.00,alpha(i,j,L,5,2))
dargi = min(abs(alpha(i,j,L,5,2)},signx*alpha(i,j,L,5,1))
g(i,j,L,5,2) = signx * max(0.00,dargl)

10 continue

The subroutine indixcp utilizes the block table in conjunction with the coordinate

transformations given by equations 39 and 40 to compute proper loop indices for iblkmn and

iblkrnx. As an example, taking i/in = 44 and iftn2-1 = 58, the computed values of the loop indi-

ces returned by in&cp are provided in Table B. 1.

Table B.1: Example loop limiter values returned by isdxcp

Block Ibirmn IbIha'n
Number (L)

1 0 -1

2 0 -1

3 14 16

4 .11

In this example, blocks 1 and 2 perform no computational work within the loop. Thus,

processors handling those two loops can either be allowed to continue execution on other

loops, or if synchronization is required, can be forced to wait for other processors to finish the

loop.

73

Although the subroutine indxcp addresses the issue of computational to block coordi-

nate transformations and eliminates any specialized loops which are specific to certain

blocks- as seen in code fragment 2-across-block references are still not properly treated. For

this reason, an additional routine was added to all loops containing across-block references.

The use of this routine is shown in the following code fragment taken from the turbulent vis-

cosity calculation subroutine.

Code Fra&rn=t 4: Across-Block Referenr Check

do 116 i=itrans,iend-i
if (vort(i,jbegin(i)-1,k) .1t. .1) then

bstar = 0.
else

dpdxi = 0.5*(p(i+l,jbegin(i)-l,k)-p(i-l,jbegin(i)-l,k))
endi-

116 continue

do 116 L = 1, numblk
call indxcp(L,itransiend-l,jmin,jmax,kmin,kmax,iblkmniblkmx,

jblkmn, jblkmx, kblkmn, kblkmx)
do 116 1 = iblkmn. iblkmx

if(i .ea. iblkmn) then
Llm=-L
iml =i
ir~l = i+l

Llap =Lidir = -1,
call offset_(Lim. iml. idir. 1

elseif(i .ea. iblkmx) then

iml = i-ILlm=L

call offset(LID. inl. idir. 1

Llm=L
Lim = L-

il = i+1
end if

if(vort(i,jbegin(L,i)-l,k,L) .lt..1) then
bstar = 0.

else
dpdxi=0.5" (p(il, jbegin(L, i) -I,k,LI) -p(iml, jbegin(L, i) -l,k,Lilm))

endi f
116 continue

Subroutine offset takes as inputs the i coordinate in block coordinate space as the first

two parameters of the subroutine along with the direction of the offset (either -1 or +1 for a

74

decrement or increment, respectively) in the third argument and finally the number of points

to offset from the current block coordinate in the fourth parameter, and the new block coordi-

nates are returned in the first two subroutine arguments. With this final addition to all loops

containing across-block refereuces, the block-decomposition process is complete. Advantages

to this method include:

* The implementation is extremely flexible. Given the block table and proper coordi-
nate transformation equations, any looping index can be properly treated.

• Modifications to the looping calculations are localized to a single subroutine
rather than scattered through the code.

* A blocking implementation in the other two coordinate directions can be coded
into the subroutine to allow for a completely generic block decomposition.

* No memory is wasted in buffer arrays.

The code listings for subroutines indzcp and offset appear in Appendix D. Examina-

tion of the code reveals that both subroutines are of 0(1) and thus they do not affect the com-

plexity of the computer code. The overhead associated with the subroutine call can be reduced

by inlining the subroutines. There are, however, performance penalties associated with the

domain decomposition which are discussed in Chapter 4.

B.5 Vectorization issues

Although the serial code was written to be highly vectorizable, this was not a priority

in the blocked version of the code since near-term target machines for implementation1 were

all RISC-based scalar machines. Consequently, the reduction of code vectorizability caused by

the addition of the conditional such as that appearing in code fragment 4 was deemed an

acceptable trade-off for the lower memory required when compared to the buffer-array con-

cept. Code fragment 5 shows a typical looping construct similar to that given in code fragment

5 along with a vectorization summary from the Convex C220 Fortran compiler. The loop body

is omitted in this example since it is not required to demonstrate the loop vectorizability.

1. Current implementation plans are for a shared memory DEC alpha-based system, and a distrib-
uted memory workstation farm concept. Longer-term plans call for implementation on the Intel
i860TMI XP-based Paragon, a vector machine.

75

Code Fragnwt 5: Vetorizahilily Isues

do 8881 k = 2, kmax-2
do 100 j = 1, jmax-1
do 100 i = 2, ifin-1

/*loop body with across-block references appears here

100 continue
8881 continue

The vectorization summary for this loop is given as

Iterative Variable R nL n rmation

K Parallel
J Scalar
I FULL VECTOR

PAN&EM odp
do 8881 k = 2, kmax-2
do 100 L = 1, numblk

call indxcp(L,2,ifin-l,jmin,jmax,kkmin,nkmax,iblkmn,iblkmx,jblkmn,
jblkmx, kblkmn,kblkmx)

do 100 i = iblkmnn, iblkmx
if(i .eq. iblkmn) then

Llm = L
iml = i
idir = -1
call offset(LI, iml, idlr, I

else
iml = i-I
Llm = L

endif

do 100 j = 1, jmax-i

/*loop body with across-block references appears here

100 continue
8881 continue

The vectorization summary for this loop is

Iterative Variable Rrderin mtin

L Scalar
I Scalar
J FULL VECTOR Interchanged
K Parallel

The conditional destroys the vectorizability over the i index. On the Convex C220, the

compiler instead vectorized over thej index. This vectorization is not as efficient due to the

fact that vectorization over the second array index results in a non-stride-one or non-contigu-

76

ous memory access which can be considerably slower than a stride-one memory access (8];

however, vectorization and non-stride-one memory access issues are highly compiler and

machine-architecture specific [23,371, and the issue must be carefully examined on any vector

machine of implementation. In this case, it may be possible to force vectorization over the i

index with the use of compiler directives.

B.6 Synchronization Issues

Reference [351 notes that coarse-grained parallelism generally achieves better perfor-

mance gains than a fine-grained parallel approach. Coarse-grained parallelism can be viewed

as program-level or at least subroutine-level parallelism as opposed to fine-grained parallel-

ism which achieves concurrency at the loop level. The code as implemented in this project

uses a fine-grained parallel approach. Implementation of coarse-grained parallelism on the

serial version of the code requires a great deal more code restructuring as well as certain soft-

ware tools capable of explicit control over the parallel processes. Figures B.4 and B.5 depict

the differences between coarse- and fine-grained parallelism. In the coarse-grained approach,

the initialization of a process, known as thread forking, occurs very infrequently. On the other

hand, thread forking occurs much more often in a fine-grained approach. Since each forking

process requires approximately 400 clock cycles to execute [34], the fine-grained approach can

require significantly greater execution times for CFD codes, which are very heavily loop struc-

tured.

While the fine-grained parallel approach does suffer from performance problems, syn-

chronization issues are not as great a concern because each loop is completed by all processors

before execution of the next loop begins. This is in contrast to the coarse-grained parallel

approach for which it cannot be known in which order the parallel loops will execute. Code

fragment 6 illustrates the potential synchronization problems.

77

Ovedeamd
hmre Omly

Figure B.4 Coarse-gralned parallelism

do 2004 k = 1,kmax
do 2004 j = 1,jmax
do 2004 i =2,imax

jtild(i,j,k) = (1./3.*((xejp(i~j,k)+xnip(i,j,k),.Lzkp(i,j,k))*
(xpb(i~j~k)-xpb(i-1,j-1.k-1))÷(yejp(i,j,k)+ynip(i,j~k)+yzkp(i~j~kp*

(zpb(i,j..k)-zpb(i-l.j-1,k-1))))

78

• IN Th es

Tked Do L.o" Sot

Figure B.5: Fine-gralned parallelism

79

2004 continue

/*portion of code omitted here

do 2007 k=1,kmax-l
do 2007 j=1,jmax-l
do 2007 i=l,imax-l

/*portion of loop omitted here

zkxipi(i~j,k) = sqrt(xnip(i,j,k) *'2+ynip(i,j,k)**2 +

/*portion of loop omitted here

2007 continue

PANS-EML.d
do 2004 L = 1, numbik

call indxcp(L,2,imax,jmin,jmax,kmin,kmax,iblkmn~iblkmx
jblkmn, jblkmnx, kblkmn, kblkanx)

do 2004 i = iblkmn, iblkmx
if(i -eq. ibl]knn) then

Lim = L
imi = L
idir = -1
call offset(Llm, iml, idir 1

else
Lim = L
imi = i-l

endif

do 2004 j =1, jmax
do 2004 kc = 1, kinax

jtild(i,j,k,L) =(l./3.*((xejp(i~j,k,L)+xnip(i,j,k,L)+

(yejp(i~j,k,L)+ynip(i,j,k,L)+yzkp(i,j,k,L))*
(ypb(i~j,k,L)-ypb(iml~j-1,k-l,Llm))+
(zejp(i,j,k,L)+znip(i,j,k,L)+zzkp(i,j,k,L),*
(zpb(i~j,k,L)-zpb(iml,j-l,k-1,Llm))))

2004 continue

/*portion of code omitted here

do 2007 L = 1, nuxnblk
call inxpLIia-~mnja~mnknxilm~bkx

jblkmn, jblknx, kblknn, kblkmxn)
do 2007 i = iblkmn, iblkmx

if(i .eq. iblkmx) then
Ulp = L
ipl = L
idir = I
call offset(Ulp, ipl, idir 1

else
Lip = L
ipi = i+l

endif

do 2007 j = 1, jmax-l
do 2007 kc = 1, kmax-l

/*portion of loop omitted here

80

zkxipi(i,j,k,L) = sqrt(xnip(i,j,k,L)**2.ynip(i,j,k,L)-,2znip(i,j,k,L)**2)/ (.5"(Jtild(ir~l,j,k,Llr))÷jtild(i,,j,k,L)))

/'portion of loop omitted here

2007 continue

In loop 2007, for i = ibLkmx, the computation of the variable zkxipi uses an across

block reference of the variablejtild where the value forjtild is computed in loop 2004. If code

for each block is executing on separate processors, then it cannot be assumed that the

required array element ofjtild has been calculated when the across-block reference is made.

Failure to synchronize the code before execution of loop 2007 will result in errors which are

nondeterministic in nature and consequently extremely difficult to find.

The situation is resolved by utilizing an operating-system-level function call or com-

piler directive to ensure that all threads of execution reach a rendezvous point before the

potentially incorrect reference is made.

B. 7 Future Code Modification Issues

As discussed in Chapter 3, the objective of the development of PANS-3EM was to pro-

vide a code readily adaptable for implementation on either a shared- or distributed-memory

computing platform. Each of these platforms require a different implementation style.

B. 7.1 Shared-Memory Implementation

PANS-3EM has been successfully run on several shared-memory computing plat-

forms. Parallelism can be achieved at the loop level in one of three methods. The first involves

the simple use of a command line compiler flag which leaves the parallelization task exclu-

sively to the compiler. Because modern compilers are relatively sophisticated at loop-level

optimizations, this method can produce substantial performance improvements with little or

no work on the part of the programmer.

The second method of achieving parallelism is to embed compiler directives within the

source code. This method has the advantage of potentially greater performance gains than the

81

first method, but it requires more programming effort.

Finally the third method of achieving parallelism requires the existence of operating

system level functions which provide the programmer explicit control over nearly all aspects

of program parallelization. Unlike the first two methods, coarse-grained parallelism can be

achieved. Therefore, this method provides the greatest potential benefit in terms of perfor-

mance improvement. In order to utilize this method, PANS-3EM should be restructured to

allow for a greater degree of domain decoupling than is possible in the current implementa-

tion. This requires the ezamination of the code to determine all data dependencies and syn-

chronization points. The reader is referred to References [351 and [34] for excellent

discussions on this type of shared-memory parallel programming.

B. 7.2 Distributed-Memory Implementation

Since a distributed-memory machine generally has no block of common memory to

contain variables used by all subdomains, implementation of PANS-3EM on such a platform

requires the complete decoupling of the subdomains. This can be accomplished by modifying

the use of the fourth index of the data arrays (the L index) to identify a particular processor

on which a given subdomain executes. A decoupling of the domains provides the greatest

potential performance improvement. Using this approach, it is possible to allow the time-inte-

gration to proceed at different rates over each of the subdomains depending on the nature of

the flow and structure of the grid. Since Moran [281 has already examined the stability issues

associated with local time stepping in the serial code, few stability-related problems should

arise in this type of modification.

Other issues related to a distributed-memory implementation include the message

passing capabilities and memory capacities of a particular machine. As the size of the problem

increases or as the computational mesh is refined, memory limitations will affect the number

of subdomains that must be used. A greater number of subdomains corresponds to a greater

amount of information which must be communicated via messages. If this information is not

communicated effectively, then parallel efficiency drops dramatically and the scalability of the

82

computer algorithm is adversely affected.

The message passing capabilities of the target machine will also affect the choice of

data structures used to hold the messages. For example, it is possible to pass individual array

elements as messages for across-block references. However, it may be more feasible to pass an

entire array section than an individual array element for across-block references. If so, the

buffer-array concept should be carefully examined since the performance gains may outweigh

the incurred memory penalty.

83

Appendix C: Code Modification

Approximately 21000 lines of code comprise the serial version of the computer pro-

gram. The extra control and looping structures required for the subdomain implementation

resulted in 7000 additional lines of code. In addition to loop modifications, certain structural

aspects of the serial code were changed slightly during the modification process. A synopsis of

those changes appears in this appendix in the form of high-level program flow charts. The

code flow diagrams for the serial and parallel code versions appear in Figures B.1 and B.2

respectively.

84

*smg. m bsib. Ih N r~f

C. SuaZod lwdZga (f3

.85

yu

- t1wAd" NO

Yu UWd A~ NO
(loub 1)

11=10,20-

To

oft

N

uft*o

n9N6A A

NO=lmwaft

ftlam"m

CA Swhd code f1cm diagrm (2 of 3)

86

no

mF ffm Earn

CA1 SWIM. cc&o flow dlagmm (3 of 3)

87

mIMD

| •

8a ~ i rwnk DOWN w11

B•A2 U BWT1Afl,Pt CAI4 .IaBOSTA4

Figure C.2 PANS-3EM flow diagram (1 of 3)

88

No

m ~db~nu Nois

F4ueCT AS3Mflwdarm(f3

89

As
phi"in

IJd h

-ww

Flgur~~~ CioPnSMfow"darm(f3

90ifiw

Appendix D: Code Listings

This appendix contains listings of the routines which are crucial to the domain-decom-

position approach taken in this investigation. Listings include

"• the code listing for the domain decomposition subroutine,

"* the code listing for the loop index computation subroutine,

"* the code listing for the offset calculation subroutine,

"* the code listing for the computational-to-block coordinate transformation subrou-
tine.

Several features of the subroutines were not fully utilized in the current implementa-

tion of PANS-3EM but are provided for ft'ture expandability. Abrief discussion of each follows.

D. 1 Domain Decomposition Subroutine (subroutine domain)

This subroutine divides the computational domain into the subdomains and builds

the block table described in Chapter 3 and A-pendix B. The current implementation divides

the computational domain as evenly as possible over the i coordinate direction. Given m nodes

and n subdomains in the i-coordinate direction, the first n-i subdomains will contain k points

where

and the last subdomain will contain m - (n - I) k points in the i direction. With the lack of

dynamic memory allocation capabilities in the current language of implementation, this

approach can result in a maximum of n-i wasted memory locations since all subdomains must

be dimensioned the some. This problem can be easily solved if the language of implementa-

tion is changed, or the code is modified for use on a distributed-memory system.

91

Coa Ustias~~l forl •LIbroutne DQnl

c' This subroutine sets up the subdomain block table which determines
c* which blocks must exchange data across a face. Current
c* implementation restricts the blocks to be contiguous, with no
c* jogs or shifts of the domain boundaries across the block boundaries.
c* See the documentation for a description of the allowable block
c' configurations.c*

c* Block table data structure: The block table is implemented as a
c* two dimensional array with the first index referencing the
c* particular subdomain block. The second index ranges from I to 9
c* with each index representing the following:
c

1

c* 1--the neighbor tc the block on its IMIN side
c* 2--the neighbor to the block on its IMAX side
c* 3--the neighbor to the block on its JMIN side
c* 4--the neighbor to the block on its JMAX side
c* 5--the neighbor to the block on its KMIN side
c 7 6--the neighbor to the block on its KMAX side
c* 7--the number of nodes within the block in the i direction
c* 8--the number of nodes within the block in the j directionc* 9--the number of nodes within the block in the k direction

c*
ci Fields 1-6 will contain a block number if the block has a
c* neighbor on that side. If the block has a boundary on that
c* side, the field will contain a zero.
c.
c* Fields 7-9 are required in case the blocks do not all contain
c* the same number of nodes in a given coordinate direction.
c*
cO Last Modification Date: 29 Aug 93
c*
c* Comments:
c*

subroutine domain(

INCLUDE 'commons'

integer minj(numblk), maxj(numblk),
mink(numblk), maxk(numblk)

c character*l answer
c character*15 domfile

imin = 1-ighost
jmin = 0
kmin = 0

c
"c Get input from the user to determine subdomain decomposition
"c preferences
c

write(*,*) 'Is there a domain decomposition file (y/n)?'
read(*,*) answer
if(answer .eq. 'In') then

write(',*) 'Do you want the program do set up',
& ' subdomains (y/n)?'

read(*,*) answer
if(answer .eq. 'In') then

write(',*) 'No explicit parallelization will occur'
numblk = 1

else
write(*,*) 'Input the number of subdomains (max = 12)'
read(*,*) numblk
write(*,*) 'Current decomposition technique divides',

& ' subdomains evenly along the i axis'

92

write(*,*) 'Enter the number of grid points in the',
& i direction'

read(*,*) imaximum
iblknd = idim/numblk

c
"c Determine the maximum and minimum coordinate values that will
"c lie in each block. These values are the actual coordinate values"c including ghost points and are used to determine block
"c adjacencies in the next section of the code.
c

mini(l) = 1-ighost
maxi(l) = mini(l)+idim-l
mini(l) = 0
maxj(1) = jmax
mink(l) = 0
maxk(l) = knax
do 5 i = 2, numblk-l

mini(i) = maxi(i-l)+l
maxi(i) = mini(i)+idim-l
mini(i) = 0
maxj(i) = jmax
mink(i) = 0
maxk(i) = kmax

5 continue
mini(numblk) = maxi(numblk-l)+l
maxi(numblk) = imax
minj(numblk) = 0
maxj(numblk) = jmax
mink(numblk) = 0
maxk(numblk) = kmax

endif

else
write(*,*) 'Input the name of the domain decomposition file'
read(*,*) domfile
open(UNIT=12, FILE=domfile, STATUS='OLD')
read(12,*) numblk
do 10 i = 1, numblk

read(12,*) mini(i),maxi(i),minj(i),maxj(i),mink(i),maxk(i)
10 continue

endif

write(*,*) 'The program will divide the computational domain',
& ' into', numblk, I subdomains'

c
"c Now build the block table. First determine the neighbors of each
"c of the blocks.
c
"c **NOTE:** Current implementation of domain decomposition is trivial.
"c This code is really unnecessary, but will be required when a more
"c general decomposition structure is implemented.
c

do 100 i = 1, numblk
if(mini(i) .eq. imin) then

iblktb(i,l) = 0
else

do 20 j = 1, numblk
if(maxi(j) .eq. mini(i)-I .and. maxj(j) .eq. maxj(i)

.and. maxk(j) .eq. maxk(i)) then
iblktb(i,l) = i
goto 25

endif
20 continue
25 endif

if(maxi(i) .eq. imax) then
iblktb(i,2) = 0

else
do 30 j = 1, numblk

if(mini(j) .eq. maxi(i)+l .and. maxj(j) .eq. maxj(i)

93

&L.and. maxkj) .eq. maxk~i; then
iblktb(i,2) =
goto 35

endif
30 continue
35 endif

if(mini(i) .eq. jmin) then
iblktb(i,3) = 0

else
do 40 j = 1, numblk

if(maxj(j) .eq. minjii)-! .and. maxi(i .eq. maxi(j)
&L.and. maxk(j) .eq. maxk(i)) then

iblktb(i,3) = j
goto 45

endif
40 continue
45 endif

if(maxj(., .eq. jmax) then
iblktb(-,4) = 0

else
do 50 j = 1, numblk

if(minj(j) .eq. maxj(i)+l .and. maxi(i) .eq. maxi(j)
.and. maxk(j) .eq. maxk(i)) then

iblktb(i,4) = j
goto 55

endif
50 continue
55 endif

if(mink~i) .eq. kmin) then
iblktb(i,5) = 0

else
do 60 j = 1, numblk

if(maxk(j) .eq. mink(i)-l .and. maxi(i) .eq. maxi(j)
.and. maxj(j) .eq. maxj(i)) then

iblktb(i,5) = j
goto 65

endif
60 continue
65 endif

if(maxk(i) .eq. kmax) then
iblktb(i,6) = 0

else
do 70 j = 1, numblk

if(mink(j) .eq. maxk(i)+l .and. maxi(i) .eq. maxi(j)
.and. maxj(j) .eq. maxj(i)) then

iblktb(i,6) = j
goto 75

endif
70 continue
75 endif

100 continue
c
"c Now, load the maximum i index for each block. Note that this
"c assumes that the minimum i index for each block is 1 and
"c that the minimum j and k indices are 0. This apparent
"c discrepancy is to minimize conversion pain at this time.
c

do 110 i = 1, numblk
iblktb(i,7) = maxi(i)-mini(i)+1
iblktb(i,8) = maxj(i)
iblktb(i,9) = maxk(i)

110 continue

RETURN
END

94

D.2 Loop Index Computation Subroutine (subroutine indxcp)

This subroutine uses the block table constructed in subroutine domain to determine

the proper loop values for the i coordinate direction in block coordinates given the loop indices

in computational coordinates. While no decomposition was performed in either thej or k coor-

dinate directions, this subroutine can easily be modified to allow for such. The subroutine

parameters necessary to provide for this modification are already incorporated into the sub-

routine argument list.

Code Listing for SubrouIne Domain

C.

c* This subroutine calculates the proper indexes for all program
c* loops given the minimum and maximum coordinates in computational
c* coordinates. Values are returned in the ()blkmn and ()blkmx
c* subroutine parameters.
c*

subroutine indxcp(iblknm,ilft,irtjlft,jrt,klft,krt,
& iblkmn,iblkmx, jblkmn,jblkmx, kblkmn,kblkmx)

integer iblknm, ilft, irt, jlft, jrt, klft, krt,

& iblkmn, iblkmx, jblkmn, jblkmx, kblkmn, kblkmx

INCLUDE 'commons'

c
c There are six cases to test for for each coordinate. They are:
c
c CASE 1: The min and max coordinates are both less than the
c minimum coordinate for that block. Then that block
c does not participate in the loop.
c
c CASE 2: The min and max coordinates are both greater than the
c maximum coordinate for that block. Then that block
c does not participate in the loop.
c
c CASE 3: The min and max coordinates are both within the block.
c Both coordinates are computed.
c
c CASE 4: The min coordinate is within the block and the max
c coordinate is outside the block. The min coordinate
c is computed and the max coordinate is set to the max
c block coordinate.
c
c CASE 5: The min coordinate is less than the min coordinate of
c the block and the max coordinate is greater than the
c max coordinate of the block. Then the full block
c participates in the loop.
c
C CASE 6: The min coordinate is less than the min coordinate of
c the block and the max coordinate is within the block.
c Then the min coordinate is set to the min block
c coordinate and the max coordinate is calculated.
c

95

c NOTE THAT ALL THESE CASES ASSUME A FORWARD SWEEP ..;ITH THE MAX
c COORDINATE OF GREATER VALUE THAN THE MLNIMT:M -jCRDINATE

C

c Case 1

if(irt .1t. rnini(iblkrnm) then
4.blkmn =0
iblkrnx = -

goto 1000
end~i

c Case 2

ifý jilt .gt. rraxi~iblknm))then
iblkmn = 0
iblkinx = -1
goto 1000

endif

C
c Case 3

if(jift .ge. mini(iblknm) -and. irt .1e. rnaxi(i'blknrnl) then
iblkrnn = ilft-mini(iblknm) s-I
iblkirnx =irt-mini~iblkrnm)+l
goto 1000

endiff

c
c C'ase 4

if(jilt .ge. mini(iblknm) -and. irt .gt. maxi(iblknxn)) then
iblkmn = ilft-mini(iblknrn)+l
iblkmx = iblktb(iblknrn,7}
gotolOOO

endif
C

c Case 5
c

if(jilft .1t. mini(iblknrn) -and. irt .gt. rnaxi4(iblknin)) then
iblkrnn = 1
iblkmx = i.blktb(iblknin,7)
goto 1000

endif

C
c Case 6

if(jilt .1t. mini(iblknrn) .and. irt .1e. maxi(iblknm))then
iblkmn = 1
iblkrnx = irt-mini(iblknim)+1
goto 1000

endif

1000 continue
RETURN
END

96

D.3 Offset Calculation Subroutine (subroutine offset)

This subroutine is used to calculate a new block coordinate given from a block coordi-

nate and an offset value. A discussion of the requirement for this subroutine appears in Sec-

tion B.2.1. The subroutine uses the coordinate transformation relations given by equations

39-40. Should the method of domain decomposition change, then those equations and this

subroutine must necessarily be modified.

CodA Listina for SubroutinA Offset

C.

c* This subroutine calculates a new block coordinate given a block
C* coordinate, (Li), and an offset direction and number of offset
c* points.
C.

SUBROUTINE offset(iblknm, i, idir, inumpt

znteger iblknm, i, idir, inumpt

INCLUDE 'params'

c
c Convert the block and coordinate to computational coordinates.
c

iglob = (iblknm-l)*idim + i - ighost
c
c Calculate the new global coordinate.
c

iglob = iglob + idir*inumpt
c
c Convert the new coordinate back into block coordinates.
c

iblknm = INT((iglob+ighost-.001)/idim)+l
i = iglob+ighost - (iblknm-l)*idim

RETURN
END

D.4 Coordinate Transformation Calculation Subroutine (subroutine gl2blk)

This subroutine performs the transformation calculation for converting computational

coordinates into block coordinates. Like subroutine offset, it uses the transformation equa-

tions.

97

Code Listing for Subroutine fih2h1k

Ci

c* This subroutine converts a computdtional i coordinate into the
c* corresponding block coordinate.
c*

SUBROUTINE glb2blk(iblknm, i

integer iblknm, i

INCLUDE 'params'

temp = i+ighost-.001

iblknm = INT((i+ighost-.001)/idim)+l
i = i+ighost - (iblknm-l)*idim

RETURN
END

98

Bibliography

1. Alef, M., "Concepts for Efficient Multigrid Implementation on SUPRENUM-like Architec-
tures," Parallel Computing 17, pp. 1-16, 1991.

2. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., Computational Fluid Mechanics and

Heat Transfer, McGraw-Hill, 1984.

3. Anderson, J. D., Fundamentals of Aerodynamics, McGraw-Hill, 1984.

4. Beran, P. S., "AERO 753 Class Notes," Air Force Institute of Technology, 1993.

5. Braaten, M. E., "Solution of Viscous Fluid Flows on a Distributed Memory Concurrent
Computer," International Journal for Numerical Methods in Fluids, Vol. 10, pp. 889-905,
1990.

6. Cebici, T., Stewartson, K, and Whitelaw, J.H., "Calculation of Two-Dimensional Flow
Past Airfoils," Numerical and Physical Aspects of Aerodynamic Flows II, Springer-Verlag,
1983.

7. CMMD Reference Manual, Thinking Machines Computers, 1993.

8. Convex FORTRAN User's Guide, Convex Computer Corporation, 1988.

9. Cray Computer Corp., 1992 Annual Report, Feb 1993.

10. Dubois, F. and Mehlman, G., "Nonparameterized 'Entropy Fix' for Roe's Method," AIAA
Journal, Vol. 31, No. 1, Jan 1993.

11. Furukawa, Masato, et al, "A Zonal Approach for Solving the Compressible Navier-Stokes
Equations Using a TVD Finite Volume Method," JSME International Journal, Vol. 33, No.
4, 1990.

12. Gabeaud, A., "Base Pressures at Supersonic Velocities," Reader's Forum, Journal of the
Aeronautical Sciences, Vol. 17, No. 8, pp. 525-6, August 1950.

13. Gates, R. S., et al, Aerodynamic Test and Analysis of a Slender Generic Missile Configura-
tion," AIAA Paper 89-3368, August 1989.

14. Gustafson, J.L., Montry, G.R., and Benner, RE., "Development of Parallel Methods for a
1024-Processor Hypercube', SIAM Journal on Scientific and Statistical Computing, Vol.
9, No. 4, July 1988.

15. Hammond, Steven W. and Barth, Timothy J., "Efficient Massively Parallel Euler Solver
for Two-Dimensional Unstructured Grids," AMA Journal, Vol. 30, No. 4, April 1992.

16. Harten, A., "High Resolution Schemes for Hyperbolic Conservation Laws," Journal of
Computational Physics, Volume 49: 357-393 (1983).

99

17. Hauser, J. and Williams, R., "Strategies for Parallelizing a Navier-Stokes Code on the Intel Touch-

stone Machines," International Journal for Numerical Methods in Fluids, Vol. 15, pp.5 1-58, 1992.

18. Hord, R. M., Parallel Computing in SIMD Architectures, CRC Press, Inc., 1990.

19. Horton, G. and Knirsch R, "A Time-Parallel Multigrid-Extrapolation Method for Parabolic Par-
tial Differential Equations," Parallel Computing 18, pp. 21-29, 1992.

20. Intel Corporation, Paragon Supercomputers, 1992.

21. iPSC*/2 and iPSCO/860 Fortran Routines, Programmer's Reference Manual, Intel Supercomputer
Systems Division, 1991.

22. Karin, S.and Smith N. P., The Supercomputer Era, Harcourt Brace Jovahovich, 1987.

23. Lakshmanan, B. and Tiwari, S. N., "Study of Supersonic Intersection Flowfield at Modified Wing-
Body Junctions," A/AA Journal, May 1993.

24. Levine, D. et al., "A Comparative Study of Automatic Vectorizing Compilers," Parallel Computing,
Dec. 1991.

25. Lewis T. G. and EI-Rewini, H., Introduction to Parallel Computing, Prentice-Hall, Inc., 1992.

26. Matrone, A., et al., "LINDA and PVM: A comparison between two environments for parallel pro-
gramming," Parallel Computing 19, pp. 943-957, 1993.

27. Moran, K., Static and Dynamic Stability Analysis of a Slender Generic Missile, Using Computa-
tional Fluid Dynamics, Ph.D. Prospectus, Air Force Institute of Technology, July 1992.

28. Moran, K. and Beran, P. S., "Navier-Stokes Simulations of Slender Axisymmetric Shapes in
Supersonic, Turbulent Flow,* unpublished, 1993.

29. Moran, K, personal conversations, Apr-Oct, 1993.

30. Murman, E.M., et al, "Performance of Several CFD Loops on Parallel Processors", Report CFDL-
TR-88-3, Massachusetts Institute of Technology, March 1988.

31. Roache, P. J., Computational Fluid Dynamics, Hermosa, 1982.

32. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes," Journal
of Computational Physics, Vol. 43, pp. 357-72, 1981.

33. Shang, J.S. and Scherr, S.J., "Navier-Stokes Solution of the Flow Field Around a Complete Air-
craft,"• IAA Paper 85-1509, July 1985.

34. Shang, J.S., personal correspondence, September 1993.

35. Silverio, C. J. and Lohnes, C., IRIS-4D Series Fortran 77 Programmer's Guide, Version 2.0, Silicon
Graphics Computer Systems, 1990.

36. Sloane, G. and Walsh, K., Parallel Programming on Silicon Graphics Computer Systems, Techni-
cal Documentation, Silicon Graphics, Inc, 1991.

100

37. Smith, N. P., ed., "Where Weak Flesh Meets the Uncompromising Machine," Supercomputing
Review, Vol. I, 1988.

38. Smith, N. P., ed., "Contrasting Architectures of Minisupercomputers: Form Shapes Function,"
Supercomputing Review, Vol. I, 1988.

39. Steinbrenner, J. P., et al, "The GRIDGEN 3D Multiple Block Grid Generation System, Volume 1:
Final Report,* WRDC -TR-90-3022. Flight Dynamics Laboratory, Wright Research and Develop-
ment Center, Wright-Patterson AFB, OH, July 1990.

40. Sun, Xian-He and Gustafson, John L, "Toward a Better Parallel Performance Metric," Parallel
Computing 17, pp. 1093-1109, 1991.

41. Swisshelm, J. M., "Development of a Navier-Stokes Algorithm for Parallel-Processing Supercom-
puters," NASA TM-102188, May 1989.

42. Thompson, C. P., et al, "On the Parallelization of an Adaptive Multigrid Algorithm for a Class of
Flow Problems," Parallel Computing 18, pp. 449-466, 1992.

43. Titan Programmer's Guide, Kubota Pacific Computer Inc., 1992.

44. "Vnokur, Marcel, "An Analysis of Finite-Difference and Finite-Volume Formulations of Conserva-
tion Laws,"

45. Vitale, H. E., et al, "Aerodynamic Test and Ongoing Analysis of a Slender Generic Missile Config-
uration," AIAA Paper 91-2895.

46. Wang, J. C. T. and Widhopf, G. F., "A High-Resolution TVD Finite Volume Scheme for the Euler
Equations in Conservation Form." Journal of Computational Physics 84, pp. 145-173, 1989.

47. Yadlin, Y and Caughey, D. A., "Parallel Computing Strategies for Block Multigrid Implicit Solu-
tion of the Euler Equations," ALAA Journal, Vol. 30, No. 8, August 1992.

48. Yee, H. C., "A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods," NASA
TM-101088, Feb 1989.

101

VWita

Captain Doug Blake was born the son of Ralph E. and Patricia A. Blake on July 12,

1960 in Salt Lake City, Utah. He graduated from Richfield High School in Richfield, Utah in

1978 and joined the Air Force as a Korean Cryptologic Linguist in 1982. His initial assign-

ment was to the 6903 Electronic Security Group at Osan, Korea. There he worked as a Korean

clear speech voice operator and Ground Mission Analyst. He was recognized as Group Airman

of the Year in 1984. In 1986, he was accepted into the Airman Education and Commissioning

Program and attended the University of Missouri-Rolla where he completed a Bachelor of

Science Degree in Aerospace Engineering and graduated Summa Cum Laude in 1989. After

graduating with honors from Officer Training School, he was assigned to the Ogden Air Logis-

tics Center Operating Location at Vandenberg Air Force Base, California where he worked for

three years as a project engineer on the Follow-On Test and Evaluation (FOT&E) programs

for the Minuteman III and Peacekeeper Intercontinental Ballistic Missiles. Upon completion

of this assignment, he entered the Air Force Institute of Technology to complete a Master of

Science degree in Aeronautical Engineering where he specialized in the fields of computer

graphics, parallel computing, and computational fluid dynamics.

Permanent address: 448 Patton Drive
Springboro, Ohio 45066

102

REPORT DOCUMENTATION PAGE Ot .c(0

1`1-1 Ctol. ~I 0,'-, tO 0CA' * .~i'' 'I S '.1 - ý ~.. 11 J- n' .' -?.W~ ,C, ;t -%- . -,t -, , .,- 1.
Dai)q'Iv ; C A ~ r ' A to, * 22 2.1302 a,'a t Irý~ O~,' oe~r - l2 . -C' r . ,'I

1. AGENCY USE ONLY (Leavo lnk 2.JEPORT DAT ~ I-PP4 3Y AM ATES COVERED

7 1 Decembe 1993 master____Nola
4.TTEADSUBTITLE 5. FUNDING NUMBERS

A NUME&RICAL STUDY OF HIGH-SPEED MISSILE
CONFIGURATIONS USING A BLOCK-STRUCTURED PARALLEL
ALGORITHM

6. AUTNOR(S)

Douglas C. Blake, Captain, USAF

17. PERFORMING ORGANIZATION NAME(S) AND AODRIESS(ES) 8. PERFORMING ORGANIZATION

Air Force Institute of 'Iochnology
WPAFB, OH 45433-6583 AFIT/GAE/ENY/93D-4

9. SPONSORINGý MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Major Bill West
ASC/NA
WPAFB, OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION!'AVAILABILITY STATEMENT 12Zb. DISTRIBUTION CODE

Approved for public releas; distribution unlimited

[113. ABSTRACT (Maximum 200 words)

Anumerical analysis of the aerodynamic phenomena associated with the high-speed flight of a
sharp-nosed, four-finned, high-fineness ratio missile using a block-structured, parallel computer
algorithm is presented. The algorithm, PANS-3EM, utilizes a second-order-accurate, shock-cap-
turing, Total Variation Duimiishing scheme and incorporates a Baldwin-Lomax turbulence model.

*PANS-3EM allows for extreme flexibility in the choice of computational domain decomposition and
computing machine of implementation. Developmental work consists of conceptualization and
verification of the algorithm as well as parallel performance and scalability studies conducted on a
variety of computing platformis.

Using PANS-3EM, the aerodynamic characteristics of the missile are investigated. Drag and
pitching moment coefficients are computed and compared against experimental flight data.
Trends in the numerical data agree with experimental results with the exception that an unex-
pected reversal of the stability characteristics exhibited by the missile at speeds in excess of Mach
3.75 are not confirmed by the computer code.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Computational Fluid Dynamics; Parallel Processing (Computer-d); Navier- 114
Stokes Equation; Decomposition; TWD Schemes; Supersonic Flow 16. PRICE CODE

17. SECURITY CLASSiFICAT:ON4 14 SECURAITY CLASSIFICATION 19. SECURITY CLA5ST7".TION 20. LMI0TA Old CF ~j
OF AEPORT CF THIS PAGE OF ABSTRACT

-Unclassified Unclassified Unclassified UL

